Summary of τ -lepton Workshop

Simon Eidelman

Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk, Russia, and Lebedev Physical Institute RAS, Moscow, Russia

77 oral talks plus 18 posters presented

- τ lepton and its neutrino ν_{τ} two of the six fundamental leptons: e^- , ν_e , μ^- , ν_{μ} , τ^- , ν_{τ}
- As the heaviest lepton, τ decays into both leptons and hadrons: PDG-2018 lists 244 various decay modes of the τ
- All interactions allowed in the Standard Model as well as effects of New Physics can be studied in *τ*-lepton production and decays
- It is a very pure laboratory without hadrons in the initial and only a few in the final state (low decay multiplicity)
- Serious progress after 2005 is related to the *B* factories with $\sigma(\tau^+\tau^-) \approx 0.9$ nb, 1 fb⁻¹ $\Rightarrow 9 \times 10^5 \tau^+\tau^-$ pairs
- LHC experiments opened a new field studies of and searches for heavy particles (W, Z, H, \ldots) with τ leptons among decay products

- HFAG \rightarrow HFLAV, Eur. Phys. J. C77 (2017) 895
- In contrast to PDG, correlations and external parameters are taken into account, avoiding scale factors
- Special treatment of ALEPH data
- The fit used 170 measurements with 88 constraints, 135 final parameters
- Lepton Universality from leptonic decays: $g_{\tau}/g_{\mu} = 1.0010 \pm 0.0015, \ g_{\tau}/g_e = 1.0029 \pm 0.0015, \ g_{\mu}/g_e = 1.0019 \pm 0.0014,$ combined with hadronic modes $g_{\tau}/g_{\mu} = 1.0000 \pm 0.0014$
- Various attempts to improve the situation with $|V|_{us}$

Alberto Lusiani, September 24

$K^- \nu_{\tau}$	80715	$7.174 \pm 0.033 \pm 0.213$
$K^- \pi^0 \nu_{\tau}$	146948	$5.054 \pm 0.021 \pm 0.148$

Thomas Lueck, September 24

Thomas Lueck, September 24

$$\tau^- \to K^- K^0_S \nu_\tau$$
 at BaBar

BaBar finds 223741 ± 3461 events from (468.0 ± 2.5) fb⁻¹

τ -18, Amsterdam

September 24-28, 2018

Mode	$\mathcal{B}, 10^{-5}$
$\pi^- \nu_\tau e^+ e^-$	$2.11 \pm 0.19 \pm 0.30$
$\pi^- \nu_\tau \mu^+ \mu^-$	< 1.06

Theory:

$$(1.4 - 2.8) \cdot 10^{-5}$$
 for e^+e^- ,
 $3 \cdot 10^{-7} - 1 \cdot 10^{-5}$ for $\mu^+\mu^-$

Yifan Jin, September 24

Studies of
$$\tau^- \to l^- \bar{\nu}_l \nu_\tau l^+ l^-$$
 at Belle

Belle uses 711 fb⁻¹, the full $\Upsilon(4S)$ sample, to study five-lepton decays Expectations:

Mode	$N_{ m ev}$
$\tau^- \to e^- \bar{\nu}_e \nu_\tau e^+ e^-$	1300
$\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau e^+ e^-$	430
$\tau^- \to e^- \bar{\nu}_e \nu_\tau \mu^+ \mu^-$	8
$\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau \mu^+ \mu^-$	4

Yifan Jin, September 24

Other Studies of τ Properties at Belle

• au Michel Parameters:

 $\rho,~\eta,~\xi,~\xi\delta$ studied with an order of magnitude better stat. accuracy Denis Epifanov

• Studies of three-body decays $\pi^-\pi^-\pi^+$, $K^-\pi^-\pi^+$, $K^-K^-\pi^+$, $K^-K^-K^+$ to understand the contradiction of \mathcal{B} 's between Belle and BaBar

τ Lepton Mass Measurement at BESIII

 $M_{\tau} = 1775.91 \pm 0.12^{+0.10}_{-0.13} \text{ MeV}$

- A new measurement with 130 pb^{-1}
- 13 τ decay modes will be used
- 0.044 MeV (stat.) and 0.090 MeV (syst.) uncertainties

JianYong Zhang, September 24

Some Theory Related to τ Properties

- M. Fael: the differential decay rates and \mathcal{B} 's for muon decays to five leptons, $\tau(\mu) \rightarrow lll\nu\nu'$, in the SM at NLO. The shift is ~ 0.1% for $\tau \rightarrow e(\mu)ee\nu\nu$ and ~ 1% for $\tau \rightarrow e(\mu)\mu\mu\nu\nu$. Confirmed by the A. Signer's group at PSI. Also showed \mathcal{B} 's for $\tau \rightarrow l\nu\nu + hadrons$ to be $\mathcal{O}(10^{-8})$, within Belle-II reach.
- G. Lopez Castro: impact of new interactions on $\eta \pi^- \nu_{\tau}$, $\pi^- \pi^0 \nu_{\tau}$ decays
- K. Maltman: issues with $|V|_{us}$

Possible Anomalies in *b*-quark Decays at LHCb

Sean Benson, September 25

Possible Anomalies in b-quark Decays at Belle – I

Possible Anomalies in b-quark Decays at Belle – II

, September 25 $\,$

	$D_s^+ \to \tau^+ \nu_\tau / D_s^+ \to \mu^+ \nu_\mu$	$D^+ \to \tau^+ \nu_\tau / D^+ \to \mu^+ \nu_\mu$
SM	9.74 ± 0.01	2.66 ± 0.01
BES3	10.19 ± 0.52	3.21 ± 0.64
	$D^0 \to K^- \mu^+ \nu_\mu / D^0 \to K^- e^+ \nu_e$	$D^+ \to \bar{K}^0 \mu^+ \nu_\mu / D^+ \to \bar{K}^0 e^+ \nu_e$
SM	0.975 ± 0.001	0.975 ± 0.001
BES3	0.978 ± 0.014	0.988 ± 0.033
	$D^0 \to \pi^- \mu^+ \nu_\mu / D^0 \to \pi^- e^+ \nu_e$	$D^+ \to \pi^0 \mu^+ \nu_\mu / D^+ \to \pi^0 e^+ \nu_e$
SM	0.985 ± 0.002	0.985 ± 0.002
BES3	0.905 ± 0.035	0.942 ± 0.946

Sifan Zhang, September 25

BelleII hopes to improve sensitivity to $\mathcal{O}(10^{-9})$ or $\mathcal{O}(10^{-10})$ (BG-free) Will LHC be able to intervene?

S.Eidelman, BINP&Lebedev

p.16/35

Lepton Flavour Violation with ATLAS Brian Le

Qer

10-

10

10-2

Z→µT limit (1.3x10⁻⁵) competitive with LEP

New $Z \rightarrow eT$ result released (2.3 σ excess)

High mass search updated with 2015+2016 13 TeV dataset, better limits on Z' and RPV SUSY models

 $\mathcal{B}(Z \to e^{\pm} \tau^{\mp}) < 5.8 \times 10^{-5}$ Brian Le

 $\mathcal{B}(Z \to e^{\pm} \tau^{\mp}) < 2.4 \times 10^{-5}$, combined < 1.3E - 5 Brian Le

2016

7

Search for LFV Higgs Decays at CMS

Results of H-> $\mu\tau$ and H-> $e\tau$ searches

The most stringent to date

Jian Wang, September 25

Search for Leptoquarks at CMS

LQ results

• Strongest deviation in $\tau\tau$ +b ~500GeV within 1σ

16

K Padeken

Neutrino Studies – I

The # of talks shows that presently ν physics is experimentally driven, a laboratory to study (not a search!) New Physics beyond the SM

- Are ν s Majorana? L.Cardani (exp. overview), V. Cirigliano (theory overview)
- Absolute neutrino masses V. Hannen KATRIN expects first results soon
- Mass Ordering (3 < > 2)
 P.Fernandez-Menendez (LBL Oscillation experiments),
 L.Cardani+V.Cirigliano 0ν2β decays, where experiments are close to probing the hierarchy of ν masses

Courtesy of Yu. Kudenko and V. Paolone

Neutrino Studies – II

- Do other (sterile) neutrino exist?
 - I.Esteban (review), W.Tang (MicroBooNE), D.van Eijk, H.Seo A serious conflict between the appearance (LSND and MiniBooNe) and disappearance (Daya Bay, Minos+, IceCube) data,

The reactor anomaly most likely explained by a smaller contribution to the neutrino flux from U-235 relative to the theoretical flux as found by Daya Bay and RENO

CP violation in the lepton sector?
 I.Esteban (T2K, NOvA)
 Indications of non-zero Delta_{CP} - T2K excludes CP conservation at 2σ level and prefers maximal CP violation

Neutrino Studies – III

- ν oscillation experiments presented (PMNS mixing matrix elements)
 P.Fernandez-Menendez (T2K, NOvA, MINOS(+)), H.Seo (Reactor experiments, G.Galati (OPERA)
- New window to the workings of the universe: Neutrinos in Multi-Messenger Astronomy and stellar processes
 D.van Eijk (IceCube), P.Bocan (Solar Neutrinos)
- Tau neutrino interactions D.van Eijk IceCube - "double bang" events, G.Galati OPERA - from appearance LBL oscillations
- With improved analysis techniques ν_{τ} appearance is confirmed at ~ 6σ by OPERA

Muon
$$g - 2 - I$$

Theory Predictions

• Introduction

Bill Marciano $a_{\mu}^{\text{exp}} - a_{\mu}^{\text{th}} = 3.7\sigma, \ a_{e}^{\text{exp}} - a_{e}^{\text{th}} = -2.2\sigma$

- HVP from the lattice Christoph Lehner
- HLbL from the Lattice Harvey Meyer

Muon
$$g - 2 - III$$

- At the 2018 Lattice conference, RBC-UKQCD has presented a preliminary lattice result : a^{hlbl}_μ = (119 ± 53) · 10⁻¹¹. This updates the published result of T. Blum et al, PRL118 (2017) no.2, 022005.
- Expect also first results from Mainz in the next six months.
- Mainz delivered a calculation of the pi^0 transition form factor. in the dispersive framework $a_{\mu}^{\text{hlbl},\pi^0} = (60.43.6) \cdot 10^{-11}$. (presented at Mainz g-2 theory workshop). This compares well with the recent dispersive result $a_{\mu}^{\pi^0} = 62.6^{+3.0}_{-2.5} \cdot 10^{-11}$ by Kubis et al. PRL121, 112002 (2018).

September 24-28, 2018

Muon
$$g - 2 - IV$$

Measurements

- Historical Overview From the first measurements and theory to BNL Lee Roberts
- E989 at Fermilab Running, publication in 2019 with the BNL accuracy, in a few years x4 better accuracy Anna Driutti
- E34 at J-PARC

New low energy way, the same x4 better accuracy, R&D Tsutomu Mibe

• MUSEUM at J-PARC

From HFS in muonium Koichiro Shimomura

Great progress in the scan method at VEPP-2000 in Novosibirsk, $0.32 < \sqrt{s} < 2$ GeV, $\mathcal{L} = 3 \times 10^{31} \text{cm}^{-2} \text{s}^{-1}$ Boris Shwartz

S.Eidelman, BINP&Lebedev

p.29/35

Muon
$$g - 2 - VI$$

TFF, $\mathcal{F}_{\gamma^*\gamma^*}(q_1^2, q_2^2)$, in the new data-driven dispersive methos based on $\gamma\gamma$ data

BaBar has just announced double-tag study of the η'

 α_s Determination

- From the lattice calculations $\alpha_s(M_Z^2) = 0.1185(8)(9), \text{ PDG } 0.1174(16) \text{ Stefan Sint}$
- From τ decays and QCD Toni Pich
- From $e^+e^- \rightarrow$ hadrons and QCD Maartin Golterman
- Strong dispute around Duality Violation Diego Boito

Muon Experiments

- General features of LFV searches, Y. Kuno
- Mu3e, Search for $\mu^+ \to e^+ e^+ e^-$ at PSI, A. Bravar
- Mu2e at Fermilab, R. Bonventre
- COMET at J-PARC, N. Teshima
- $mu \rightarrow e\gamma II$ at PSI, T. Iwamoto

September 24-28, 2018

New facilities – I

- τ Physics at High Lumi LHC E. Passemar
- τ Physics at CEPC/ILC M. Ruan
- τ Physics at FCC M. Dam
- GRAND Ch. Timmermans
- Status of DUNE A. Tonazzo
- SHIP K. Bondarenko

- HIEPA G. Huang $2 < \sqrt{s} < 7 \text{ GeV}, \ \mathcal{L} = 10^{35} \text{cm}^{-2} \text{s}^{-1}$
- Novosibirsk Super- $c \tau$ Factory P. Piminov $2 < \sqrt{s} < 6$ GeV, $\mathcal{L} = 10^{35} \text{cm}^{-2} \text{s}^{-1}$, Longitudinal polarization of e^{-}

Conclusions

- Properties of τ are known very well
- τ leptons became a powerful tool at LHC
- No significant LFV anomalies
- A lot of new facilities to study leptons