

Measurement of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$, $\pi^+\pi^-\pi^0\pi^0\eta$ processes in ISR at BaBaR

E.P. Solodov, on behalf of BaBaR Collaboration Novosibirsk State University, **Budker Institute of Nuclear Physics** Novosibirsk, Russia

Abstract We study the processes $e^+e^-\rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0\gamma$ and $\pi^+\pi^-\pi^0\pi^0\eta\gamma$ with an energetic photon radiated from the initial state (ISR). About 14000 and 4700 events, respectively, have been selected. The invariant mass of the hadronic final state defines the effective e⁺e⁻ center-ofmass energy. From the mass spectra, the first precise measurements of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$ cross section and the first measurement ever of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$ cross sections are performed for center-of-mass energies from threshold to 4.35 GeV. The systematic uncertainty in the cross section measurement is typically between 10 and 13%. The contributions from $\omega \pi^0 \pi^0$, $\eta \pi^+ \pi^-$, and other intermediate states are presented. We observe the J/ψ and $\psi(2S)$ in all these final states and measure the corresponding branching fractions, most of them for the first time.

Events selection and Kinematic fit

- Consider events with two pion tracks and 7 and more photons
- Take most energetic photon as ISR
- Test each 6 photons in the event (up to 25/event sometime)
- For each 6 photons take 3 yy pairs (15 combinations) with ± 35 MeV windows around π^0 mass for two best pairs.
- Perform 6C fit in $2\pi 2\pi^0 \gamma \gamma \gamma_{ISR}$ hypothesis with π^0 mass constrain for these two pairs, NO constrain on mass for 3rd γγ pair.
- Look for best χ^2 , trying all pairs to be 3rd (+ 3 combinations)
- If fit OK, perform 6C fit for the $2\pi 2\pi^0 \gamma_{ISR}$ hypothesis

Extra cuts after 6C fit:

 $E_{\gamma min} > 0.035$ GeV, $\chi^2_{2\pi2\pi0\gamma\gamma} < 60$ – signal $60 < \chi^2_{2\pi2\pi0\gamma\gamma} < 120$ control region $\chi^2_{2\pi2\pi0}$ > 30 - suppressed $2\pi2\pi^0\gamma$, $\Delta\psi$ > 1.0 rad. - ISR photon-track min. angle - suppressed $\tau\tau$ $E_{v \text{ extra}} < 0.7 \text{ GeV}$ for energy of all extra photons NO kaon ID, NO muon ID

Fitted momenta, angles are used for all calculated parameters

major background is from $e^+e^- \rightarrow 2\pi 4\pi^0$

We fit 3rd photon pair mass to π^0 or to η mass after control region bckground subtraction and obtain number of events vs $\pi^+\pi^-\pi^0\pi^0\pi^0$ or $\pi^+\pi^-\pi^0\pi^0\eta$ invariant mass

Intermediate states for $2\pi 2\pi^0 \eta$ 2 entries/event $a_0(980)$ $m(\pi^0\eta)$, GeV/c² preliminary 0.5 E_{c.m.}, GeV intermediate We observe $\omega \pi^0 \eta(\omega a_0)$, $\phi \pi^0 \eta$, $\rho \pi \pi^0 \eta$ states and determine cross sections

efficiency from MC, radiative correction (~1%), and correction for the data-MC efficiency difference we calculate the cross sections vs $E_{c.m.}$ up to 4.35 GeV. Systematic uncertainties 10-13%

