Search for lepton-flavour-violating decays of the Z boson into a au-lepton and a light lepton with the ATLAS detector

Wing Sheung Chan (Nikhef) on behalf of the ATLAS collaboration

The 15th International Workshop on Tau Lepton Physics 24-28 September 2018 Vondelkerk, Amsterdam

Lepton-flavour-violating (LFV) decays of the Z boson

- Flavour conservation is **not** a fundamental symmetry in the SM
- Flavour-changing processes have been observed in the quark and neutrino sectors:
 - CKM matrix → quark mixing
 - PMNS matrix → neutrino mixing
- How about charged leptons?
 - Charged lepton flavour violation not observed yet
 - In the Standard model (SM): Possible beyond tree level with neutrino oscillations (fig. 1), but with vanishingly small branching ratios
- LFV *Z* boson decays
 - Z boson is a well-measured SM particle and has a large production rate at the LHC
 - While the $Z \to e\mu$ channel is heavily constrained by low-energy experiments, $Z \to e\tau$ and $Z \to \mu\tau$ are excellent channels to search for lepton flavour violation
 - In the SM, BR($Z \rightarrow \ell \tau$) ~ $O(10^{-54})$ ($\ell = e/\mu$)
 - → Unambiguous signal of Beyond-the-Standard-Model phenomena!

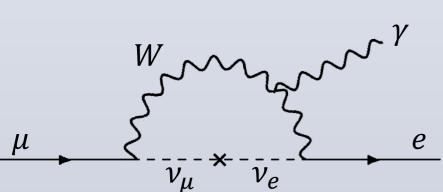


Fig. 1 Example of LFV process in the SM beyond the tree level with neutrino oscillation.

Z τ

Fig. 2 LFV decay of a Z boson into a τ -lepton and a light lepton, a BSM signal.

Unique features of the $Z \to \ell \tau$ signal events

- Final state with one light lepton and one τ -lepton (\rightarrow visible decay products $\tau_{\rm vis}$ + missing energy $E^{\rm miss}$)
- Resonance at the *Z* boson rest mass
- Opposite-sign charged $\ell\tau$ pair whose momenta are back-to-back in the transverse plane
- Boosted ℓ and τ due to the heavy mass of Z
- E^{miss} that is almost collinear with the visible τ (due to the boosted nature)
 - Allow the full energy and momentum of the τ -lepton, and thus the invariant mass of the $\ell\tau$ system, to be reconstructed in good approximation (known as the collinear approximation):

$$m_Z = m_{\ell\tau} \approx m_{\rm coll} = \sqrt{2 p_{\rm T}^{\ell} \left(p_{\rm T}^{\tau_{\rm vis}} + E_{\rm T}^{\rm miss} \right) \left(\cosh \Delta \eta - \cos \Delta \phi \right)}$$

• Have relatively high $m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$ and low $m_{\rm T}(\tau_{\rm vis}, E_{\rm T}^{\rm miss})$

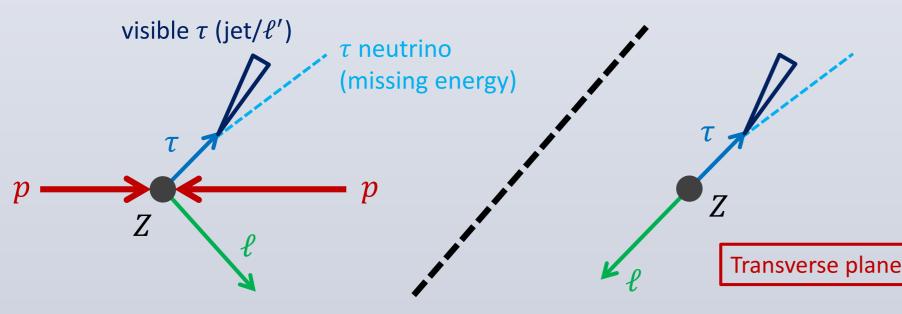


Fig. 3 Schematic diagrams showing the typical spatial configuration of a $Z \to \ell \tau$ signal event.

Major backgrounds and their estimation

- For this analysis, only channels with a hadronically decaying τ -lepton (τ_{had}) are considered. For these channels, the major backgrounds are:
 - $Z \to \tau \tau \to \ell \tau_{\text{had}}$
 - $W(\to \ell \nu)$ + jets (jet mis-identified as $\tau_{\text{had-vis}}$, a.k.a. "jet $\to \tau$ fakes")
 - $Z \to \ell\ell$ (ℓ mis-identified as $\tau_{had\text{-vis}}$, a.k.a. " $\ell \to \tau$ fakes")
- Monte Carlo (MC) simulations are used to estimate the $Z \to \tau\tau$ and $Z \to \ell\ell$ backgrounds, as well as other minor backgrounds like $H \to \tau\tau$ and diboson events.
- jet $\rightarrow \tau$ fakes are not well modelled in simulation, therefore their contributions are estimated by a data-driven method known as the fake factor (FF) method (fig. 4)
- To reduce theoretical uncertainties, all of the major backgrounds are normalised to data using events in some background-enriched, signal-free regions

Basic procedures of the fake factor method:

- **1.** Measure FF in calibration regions (CRs): FF = ratio of observed events passing/failing the τ identification algorithm (τ ID)
- 2. Apply FF in the signal region (SR): Estimation = FF \times observed events failing τ ID

	SR	CRs
Passed $ au$ ID	Estimation †	Data ↓
Failed τ ID	2. † Data	1. † Data

Fig. 4 The basic concept and procedures of the fake factor method.

Event selection and classification

- Event selection is performed based on reconstructed kinematic variables of the ℓ and $\tau_{\rm had\text{-}vis}$ candidates, together with the $E_{\rm T}^{\rm miss}$
- Suppressing W+jets and $Z \rightarrow \tau\tau$ events:
 - **Signal** low $m_{\rm T}(\tau_{\rm vis}, E_{\rm T}^{\rm miss})$ due to boosted τ -lepton decay
 - W+jets high $m_T(\tau_{vis}, E_T^{miss})$ due to large jet p_T and large opening angle between neutrino and jet ($\rightarrow \tau$ fake)
 - $Z \to \tau \tau$ high $m_{\rm T}(\tau_{\rm vis}, E_{\rm T}^{\rm miss})$ on average due to two τ -leptons decaying in opposite directions
 - \rightarrow Making use of these characteristics, a cut is placed on $m_{\rm T}(\tau_{\rm vis}, E_{\rm T}^{\rm miss})$ to divide up the background control regions and the signal region
- Suppressing $Z \to \ell \ell$ events:
 - Signal reconstructed visible invariant mass $m_{\rm vis}$ does not resemble the Z rest mass in general due to missing energy from τ neutrinos
 - $Z \rightarrow \ell\ell m_{\rm vis}$ resembles the Z rest mass since there is no missing energy in the events
 - \rightarrow Cuts are placed to reject events with $m_{\rm vis} \approx m_Z$
- After the event selection, events within the signal region are classified using neural network (NN) classifiers
- Three binary classifiers are trained for each channel, with each classifier trained against one of the major backgrounds ($Z \to \tau\tau$, W+jets and $Z \to \ell\ell$)
 - Simple network: 2 hidden layers, 16 nodes per layer; optimised to reduce cross entropy
 - Training samples: MC simulated events
 - Inputs: 4-momenta of the reconstructed ℓ , $\tau_{\rm had\text{-}vis}$ and $E_{\rm T}^{\rm miss}$, along with a few high-level kinematic variables, including $m_{\rm coll}$ and $m_{\rm vis}$
 - The different classifiers are then combined into one single powerful classifier, whose output is used for final statistical interpretations

Results, interpretations and outlook

- The expected distributions of the combined NN classifier output are fit to data in the signal region (fig. 5)
 - Data: $\sqrt{s} = 13$ TeV pp collisions, collected by ATLAS in 2015-2016 (L = 36.1 fb⁻¹)
 - Free parameters of the fit include the LFV decay branching ratio $BR(Z \to \ell \tau)$ and the normalisations of the $Z \to \tau \tau$ and jet $\to \tau$ fakes backgrounds
 - Fits for the Z → eτ and Z → μτ channels are performed separately, since the branching ratios of the two LFV decays are not necessarily correlated
 - Due to the difference in background compositions, events with 1-prong and 3-prong $\tau_{\text{had-vis}}$ candidates are fit separately but simultaneously
- No significant excess (> 3σ) of events above the expected background is observed
 - An excess in the $e\tau$ final state with a significance of 2.3σ is observed
- CL_S upper limits at 95% confidence level are set:
 - BR($\mathbb{Z} \to e\tau$) < 5.8 × 10⁻⁵ (expected: 2.8 × 10⁻⁵)
- BR($Z \to \mu \tau$) < 2.4 × 10⁻⁵ (expected: 2.4 × 10⁻⁵)
- When combined with previous ATLAS result on the $Z \to \mu\tau$ channel, the limit reached:
 - BR($Z \rightarrow \mu \tau$) < 1.3 × 10⁻⁵ (to be compared with LEP most stringent limit at 1.2 × 10⁻⁵)
- Outlook:
 - More data is coming! (Expecting $\sim 150 \text{ fb}^{-1}$ of data collected by the end of 2018)
 - Expect much improved upper limits and stay tuned!

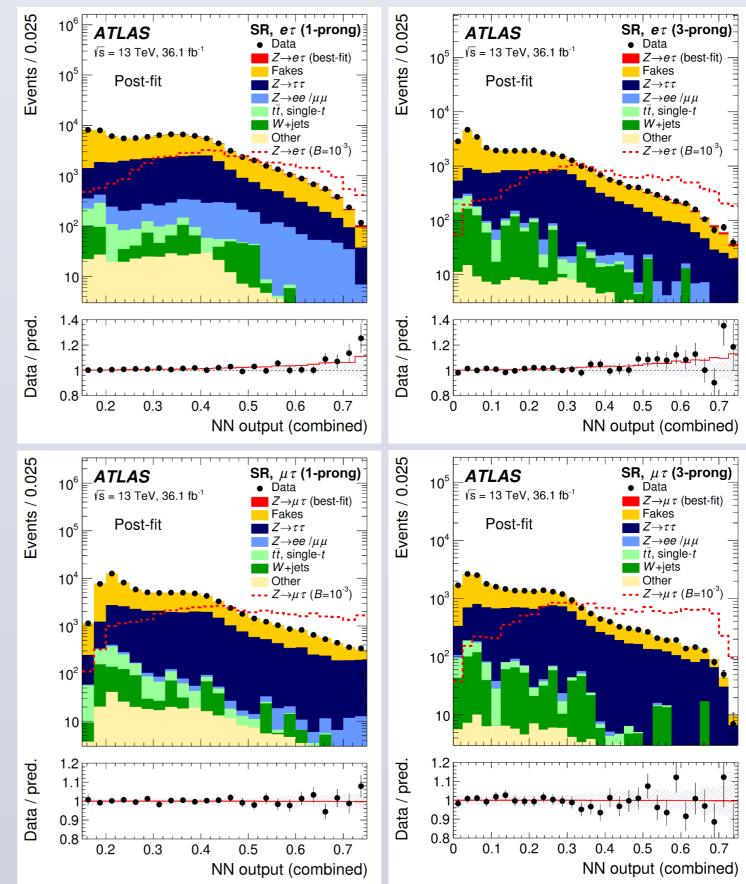


Fig. 5 Post-fit expected and observed distributions of the combined NN classifier output.