xTCA IG Meeting - CERN

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

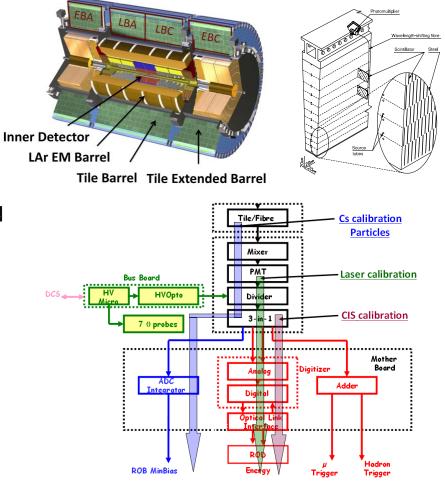
RECENT DEVELOPMENTS CONCERNING IPMI IN THE ATLAS-TILECAL UPGRADE

15-Nov-2017

P. Zuccarello – Instituto de Física Corpuscular (CSIC-UV) On behalf of the ATLAS Tile Calorimeter Group

Outline

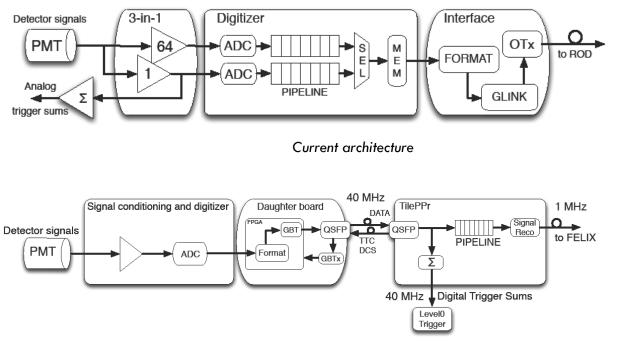
- 2 xTCA IG CERN 15/June/2017
- ATLAS Tile Calorimeter
- Phase II Upgrade
- Tile Demonstrator Project
 - Back-end electronics
 - PPR Prototype
 - ATCA platform test-bench at IFIC (Valencia)
- □ IPMI-PICMG HW Management in the PPR prototype
- IFIC's ATCA HW Management Software Tool
- Next steps @IFIC for the ATLAS-TileCal upgrade R&D
- Summary


ATLAS Tile Calorimeter

xTCA IG – CERN – 15/June/2017

3

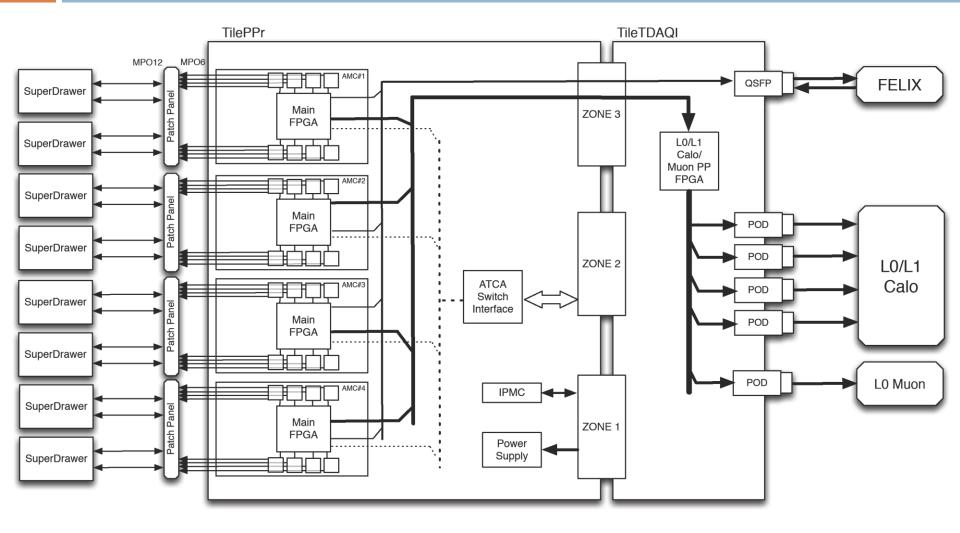
- Segmented calorimeter made of steel plates and plastic scintillator which covers the most central region of the ATLAS experiment
 - Divided in 4 partitions: each one has 64 modules
 - One drawer hosts up to 48 Photo Multiplier Tubes (PMTs)
 - The front-end electronics digitize and store the signals coming from PMTs upon the reception of a Level-1 trigger accept, when they are transferred to the Read-Out Drivers (ROD) in the back-end electronics


More than 10,000 readout channels

Tile Calorimeter Phase II Upgrade

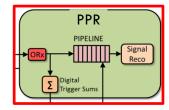
xTCA IG – CERN – 15/June/2017

- Large Hadron Collider plans to increase the instantaneous luminosity by a factor 7 around 2024 (High Luminosity LHC)
- Complete redesign of front-end (FE) and back-end (BE) electronics
 - Full digital Level-1 trigger
 - Higher reliability and robustness, higher radiation tolerance
 - Full redundant readout data links
 - Increased modularity in front-end and redundant low voltage power supplies



	Present	Phase II
Total BW	~165 Gbps	~40 Tbps (+40 Tbps)
N. fibers	256	4096 (+4096)
BW/drawer	640 Mbps	160 Gbps (+160 Gbps)

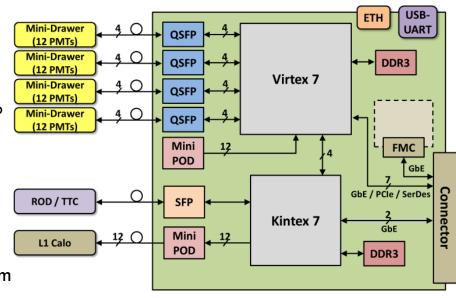
New architecture


Tile Calorimeter Phase II Upgrade

xTCA IG – CERN – 15/June/2017

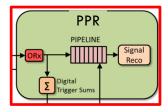
5

Back-End Electronics



6

xTCA IG – CERN – 15/June/2017


C		<u>PrePR</u> ocessor prototype		
C		High speed interface with the front-end electronics		
BW: 4 x 40 Gbps -		 Readout data coming from the detector 4 Mini-Drawers Up to 48 PMTs 	Mini- (12 Mini- (12 Mini-	
		Timing Trigger and Control (TTC) distribution to the FE	(12 Mini- (12	
		Clock distribution for synchronizationControl and configuration commands		
		Real time data processing	ROD	
		 Reconstruction algorithms: energy, time and quality factor 	L1	
		Communication with the Level-1 Trigger system		
		 Sending preprocessed data for L1 trigger decision 		
E		Keeps backward compatibility with the present DAQ system		

Valencia)

Schema of the PPR prototype

PPR prototype

xTCA IG - CERN - 15/June/2017 Xilinx Spartan 6 2 x CDR IC Slow control ADN2814 DDR3 512MB capabilities (Clock Clock/data from TTC management) Read back status of the XC7K420T system(IPMI port) 10 Gbps **Module Management** Controller (MMC) Power connection

IPMI protocol

management

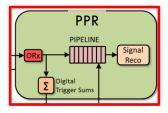
AMC connector

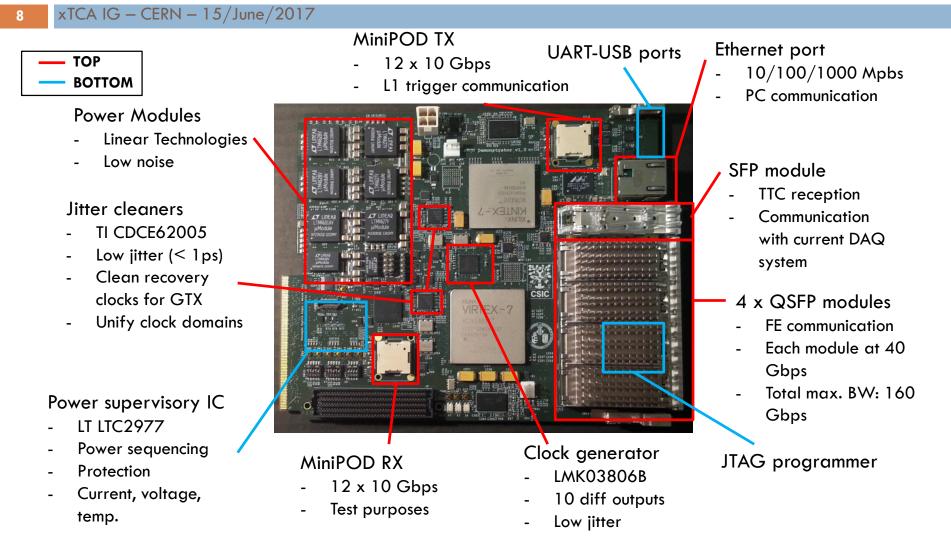
- 12 V power connection
- Slow control path
- High-speed communication path with the carrier board / µTCA crate (GbE, PCIE, custom protocols)

FMC connector

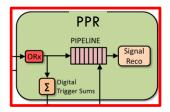
Expansion funcionalities: ADC boards, test boards, ...

DDR3 512MB

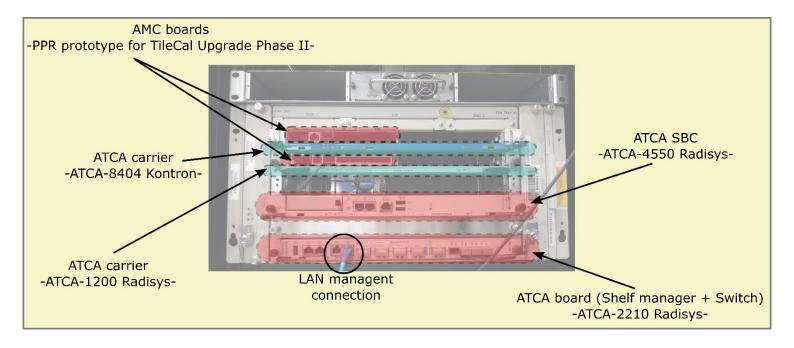

Xilinx Kintex 7 FPGA


- 28 GTX transceiver @
- Data preprocessing
- Communication with Level 1 trigger system

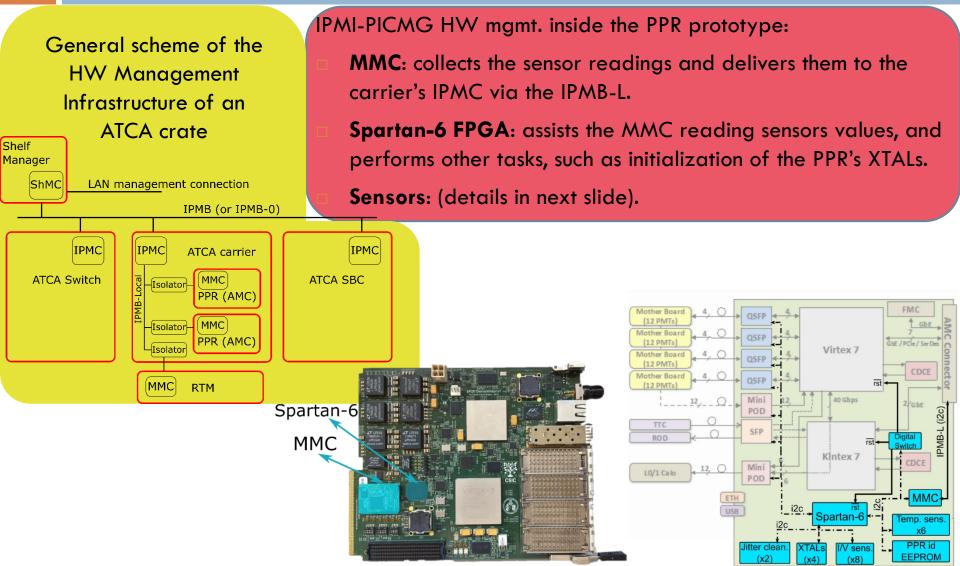
Xilinx Virtex 7 FPGA


- XC7VX485T
- 48 GTX transceiver @ 10 Gbps
- Communication with FE electronics
- Data processing

PPR prototype



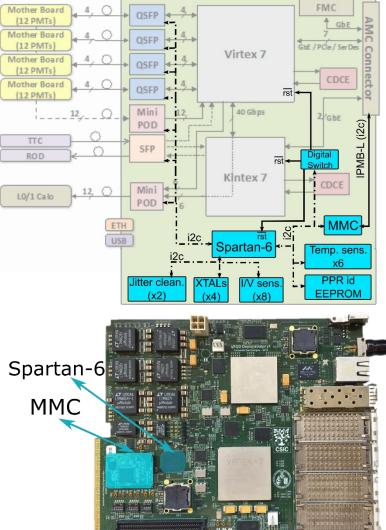
ATCA platform test-bench at IFIC (Valencia)



- 9 xTCA IG CERN 15/June/2017
- Adopted by ATLAS as VME replacement
- Double mid-size AMC form factor
 - 180.6 mm x 148.5 mm
 - µTCA crates/ATCA carrier boards + ATCA crate

- Complete ATCA test-bench
 - ELMA chassis
 - ATCA 4550 Single Board Computer (SBC)
 - ATCA-1200 carrier (Radisys)
 - ATCA-8404 carrier (Kontron)
 - ATCA-2210 board (Shelf manager + Switch)

IPMI-PICMG HW Management in the PPR prototype



IPMI-PICMG HW Management in the PPR prototype

Mother Board 4 Mother Bo Device N. devices x N. registers per device Mother Board (12 PMT Supply voltage 8x1 (sensor, r) Supply Current 8x1 (sensor, r) QSFP (link on/off state) (4x4) links x1 (control, r/w) (4x4) links x1 (sensor, r) QSFP (link optic. pwr) LO/1 Calo SFP (on/off state) 1x1 (control, r/w) SFP (optical power) 1x1 (sensor, r) MiniPOD (on/off state) 2x12 (control, r/w) MiniPOD (optical power) 2x12 (sensor, r) Temperature Sensor 6x1(sensor, r) XTALs config.registers 4x4 (control, r/w) Jitter cleaners 2x2 (control, r/w) FPGAs remote reset 3x1 (control, w)

TOTAL OF 'read' BYTES125TOTAL OF 'write' BYTES65

11

12 xTCA IG – CERN – 15/June/2017

□ 1st version: Qt-C++ GUI based on OpenIPMI libraries.

"An IPMI-compliant control system for the ATLAS TileCal Phase-II Upgrade PreProcessor module", P. Zuccarello et al., IEEE NSS-2016.

\square 2nd version: IFIC's own set of C++ functions

- Goals in mind:
 - To have more control and in-depth knowledge about the HW management IPMI-PICMG messages/commands being issued.
 - To have more control on the HW management communication with the PPR.
- Two threads:
 - 1: UDP socket to tx/rx IPMI-PICMG hw management messages/commands
 - 2: Qt-C++ GUI and other tasks such as tx buffer data preparation, mysql db connection, etc.
- Incorporates connectivity with mysql data-base to register sensor values during experiments such as testbeams

13 xTCA IG – CERN – 15/June/2017

UDP tx/rx thread

- Based on POSIX pthread. Communication with the ATCA crate is done via LAN management connector in the crate.
- run threaded loop based on sendto, select (non-blocking), recvfrom
- Decodes rx buffers (RMCP header, IPMI header and data)
- GUI thread
 - Qt-C++ GUI
 - Prepares data buffers (RMCP header, IPMI header and data) for tx
 - Handles the tx message queue
 - Handles the connection with the mysql-db
- Communication between threads
 - Qt signals/slots functionality using emit function.

14 xTCA IG – CERN – 15/June/2017

Currently implemented features:

- IPMI session activation
 - Get Channel Authentication Capabilities, Get Session Challenge, Activate Session IPMI commands (IPMI-v1.5-Rev.1.1)

Explicit message bridging

- IPMI commands delivered to PPR's MMC via IPMB-L using Send Message Command (PICMG AMC.0 Spec. Rev.2.0, Sect.3.13).
- PPR HW management commands for sensor reading and configuration are implemented using IPMI OEM Network Function codes (0x2E/2F) under CERN's IANA code (0x000060).

X 🖸	MainWindow	$\odot \odot \otimes$
Shelf address: otcoscm01 User: radisys Password: ******** Connect Carrier's IPMB addres PPR's IPMB-L addres 0x86 • 0x7C • Send Reset Command SP6 • Write EEPROM 0x 4 •	Channel: Privilege level: Auth. type: Get Authentication Capabilities 0x0E Admin NONE ***Read PPR temperatures response data*** IPMB-L cmd code 0x1 IPMB-L Completion Code 0x0 0x1	 Send message Test Button
Read Temps STOP Periodic Sensor Read		

Next steps @IFIC for the ATLAS-TileCal upgrade R&D

- □ Next steps in the **Back-end HW design**:
 - Final version of the PPR
 - Design of an in-house ATCA-carrier to hold the PPRs
- Next steps for the ATCA HW Management Software Tool:
 - Implement more IPMI-PICMG commands
 - Implement IPMI Event reading
 - Read all the sensors connected to the Spartan-6 of the PPR prototype (under development).
 - Use it in Sept.2017 testbeam

Summary

- IFIC participation in the R&D tasks for the Tile Calorimeter Phase II Upgrade
 - In-house design of the PPR
 - the central device in the back-end electronics of the upgraded ATLAS-TileCal
 - double-mid size AMC form factor (AMC.0 Rev.2.0 standard)
 - Follows IPMI-PICMG hw management standards
 - In-house design of the ATCA-carrier to hold the PPRs (future work-2018).
 - Hardware management software tool for ATCA crates
 - Uses UDP packets that encapsulates RMCP/IPMI commands.
 - Allows bridged communication, through the IPMC of the ATCA-carrier, with the MMC of the PPR
 - Stores historical sensor values in mysql db: data can be post-processed and analized off-line.