Development of the Cable Insulation for the LHC Triplet Upgrade Phase I

Pier Paolo Granieri and many contributors

TE Magnet seminar, 3 July 2009

Contributors

- Davide Tommasini, Paolo Fessia, TE-MSC
- David Richter, TE-MSC
- Sebastien Luzieux, TE-MSC

(Heat Transfer Tests) (Samples Manufacture,

Electrical Tests and Compression Tests @ 300 K)

 Michael Guinchard, EN-MME Alexandre Gerardin, EN-MME Federico Regis, TE-MSC Stefano Sgobba, EN-MME

(Compression Tests @ 300 and 77 K, stress relaxation)

 Riccardo Musenich, INFN Genoa, Italy (Heat Transfer Tests in SHe)
 Jaroslaw Polinski, Michal Strychalski, WUT Wroclaw, Poland (Heat Transfer Rob Van Weelderen, TE-CRG Tests in He II btw 2 cables)
 Marco La China, Roberto Lopez, TE-MSC (preliminary tests)

• Many thanks to M. Casali, N. Elias, P. Ferracin, K. Saqi, E. Todesco

Outline

o Introduction

Qualification Strategy of the Enhanced Insulation

- Samples Manufacture
- Heat Transfer Tests
- Electrical Tests
- Mechanical Tests

• Conclusions

Introduction

- An effective cooling of the magnet coils is essential in maintaining the superconducting (SC) state of the conductors against heat deposition / generation
- The next generation of SC accelerator magnets will deal with larger heat loads wrt the present applications (e.g. the interaction region magnets for the LHC luminosity upgrade)
- The main thermal barrier between cable and coolant is represented by the cable electrical insulation, but the potential of He superfluidity can be fully exploited with a helium permeable insulation
- An enhanced cable insulation scheme (EI) is proposed aiming at increasing the heat exchange from Nb-Ti coils to He II bath, wrt the LHC standard insulation

The concept of porous insulation

• All-polyimide insulation scheme

- Electrical insulation provided by the combined effect of the 1st ad 3rd layer
- Increased size of the cooling μ -channels provided by:
 - 2nd layer made of thin strips wound counter-wise
 - all layers wound with spacing

Qualification of the Enhanced Insulation

- Definition of a layout enabling the use of commercially available tapes and the wrapping in a semi-industrial environment → Jeumont recovered insulating machine
- Thermal qualification:
 - heat transfer towards a 1.9 K helium bath ongoing
- Electrical qualification Dielectric strength and leakage current:
 - on a 2-units stack
 on a coil

.....

• Mechanical qualification:

• winding test

stress relaxation

thermal contraction

• thickness, Young's modulus at 293 K

thickness, Young's modulus at 77 K

done

ongoing

ongoing

Second layer

03/07/2009 Development of the Cable Insulation for the LHC Triplet Upgrade Phase I

Samples Manufacture Enhanced Insulation Schemes

Insulation	1st layer (polyimide)	2nd layer (polyimide)	3rd layer (polyimide with adhesive coating)
MB	11 mm wide, no gap 50 μm thick	11 mm wide, no gap 50 μm thick, 50% overlap with the 1st layer	9 mm wide, 2 mm gap 69 µm thick, cross wrapped with the other layers
MQ	11 mm wide, no gap 50 μm thick	 11 mm wide, no gap 37.5 μm thick, 50% overlap with the 1st layer 	9 mm wide, 2 mm gap 55 μm thick, cross wrapped with the other layers
EI#1	9 mm wide, 1 mm gap 50 μm thick	3 mm wide, 1.5 mm gap 50 μm thick, cross wrapped with the other layers	9 mm wide, 1 mm gap 55 μm thick, 50% overlap with the 1st layer
<i>EI#2</i>	9 mm wide, 1 mm gap 50 μm thick	3 mm wide, 1.5 mm gap 75 μm thick, cross wrapped with the other layers	9 mm wide, 1 mm gap 55 μm thick, 50% overlap with the 1st layer
<i>EI#3</i>	9 mm wide, 1 mm gap 50 μm thick	3 mm wide, 1.5 mm gap 50 µm thick, cross wrapped with the other layers	9 mm wide, 1 mm gap 69 µm thick, 50% overlap with the 1st layer
<i>EI#4</i>	9 mm wide, 1 mm gap 50 μm thick	3 mm wide, 1.5 mm gap 75 μm thick, cross wrapped with the other layers	9 mm wide, 1 mm gap 69 µm thick, 50% overlap with the 1st layer

Samples Manufacture

- The insulated cables have been superimposed alternatively to compensate the cable keystone, thus forming a rectangular stack:
- Curing over 170 mm according to two different bonding cycles: vertical pressure of either 130 MPa (a) or 80 MPa (b) at 190 ℃:

Heat Transfer Tests in 1.9 K bath Experimental Setup

- 6-units stacks made of LHC-type 01 CuNi cables, wrapped with machine (but 3rd layer of EI#3,4), curing cycle: 130 MPa at 190 °C
- Tested insulations: MB, EI#4
- grooves machined in one of the 2 central cables, to instrument it with 9 thermocouples:

- Goal: correlate the steady-state cable temperature increase with the power evacuated through the insulation
- Pressure applied at ambient temperature through the sample holder, then cooled at 1.9 K

Heat Transfer Tests in 1.9 K bath Results

Heat Transfer Tests in 1.9 K bath Results

Heat Transfer Tests Results

 Assessment of the actual pressure at cryogenic temperatures:

- Impact of curing pressure: a sample cured with a bonding cycle at 80 MPa will be testes. Indeed, so far we are on the conservative side (130 MPa)!
- A new sample insulated with the EI#3 will be tested in the next months with the same applied pressure sequence than EI#4

- Ongoing modeling of the experimental results
- Starting from a phenomenological analysis (network of thermal resistances)
- The goodness of the enhanced insulation is confirmed by thermal independence between adjacents conductors (small R_{ss}) wrt the LHC insulation

- Investigation of the thermal coupling between two SC cables cooled at 1.9 K, in collaboration with the WUT Wroclaw, Poland
- Preliminary tests, T sensors and capillaries calibration carried out
- Heat transfer (and stress) measurements ongoing

03/07/2009

• Steady-state heat transfer measurements in He I:

 Transient heat transfer measurements in He I : (larger take-off time of the enhanced insulation)

03/07/2009

- Thermal characterization of the cable insulation in supercritical helium
- In the framework of the R&D program DISCORAP for the synchrotron SIS 300 of the FAIR facility (GSI), in collaboration with INFN Genoa, Italy

- Operating conditions:
 4.2 K, 3 bar
- Same samples previously tested at CERN

- Impact of compression stress: negligible
- First test: MB insulation

- EI#4 being tested
- DISCORAP cable insulation to be tested

Electrical Tests Experimental Procedure

- Tests performed on 2-units stacks made of LHC-type 01 cable, cured at 130 MPa (conservative) at 190 ℃ over 170 mm, pressed over 113 mm (RH: 23 30 %, T = 24.4 26.1 °C)
- Tested insulation: MB, EI#4, EI#3
- Measurements of leakage current at:
 - 1, 3 and 5 kV
 - 50, 100 and 150 MPa
 - Each test repeated 5 times (3 so far)
- *Measurements of dielectric strength:*
 - 80 MPa
 - Each test repeated 5 times (3 so far)

Electrical Tests Dielectric strength

Insulation Scheme	Sample 1	Sample 2	Sample 3
LHC MB	> 22-23 kV	18 kV	> 22 kV
EI#4	> 9 kV	> 12 kV	> 8 kV
EI#3	> 14 kV	12 kV	> 11 kV

- In agreement with the preliminary results: inter-turn breakdown voltage widely exceeds 5 kV in all cases
- The arcs often occur outside the pressed zone, in spite of the kapton foils

Electrical Tests inter-turn leakage current

- Measurement performed 2 minutes after the application of Ο the voltage 0.20 MB insulation -eakage current (nA) 0.18
- No influence of the applied stress Ο
- The 3 cable insulation schemes \bigcirc feature the same behavior

Development of the Cable Insulation for the LHC Triplet Upgrade Phase I

50 MPa

100 MPa

150 MPa

0.16

0.14

0.12

0.10 0.08 0.06 0.04

0.02 0.00

Mechanical Measurements at T_{amb} **Experimental Procedure**

- 4 stacks have been prepared for each insulation scheme: wrapped around the cables 01 and 02, and cured with the two bonding cycles
- + 4 stacks made of bare cables → total of <u>28 tested samples</u>
- First loading on a virgin stack very Ο different from the subsequent ones \rightarrow the results refer to at least the last of three cycles performed up to the same peak stress

The raw measurements have been corrected taking into account the mold deformation, measured as a function of the applied stress, by compressing a reference steel bar of known Young's modulus

⁽⁶⁾ P.P. Granieri, "Mechanical Measurements at Ambient Temperature of an Enhanced Cable Insulation Scheme for the Superconducting Magnets of the LHC Luminosity Upgrade ", to be published as CERN TE Internal Report. 03/07/2009

Mechanical Measurements at T_{amb} Stack height ($\sigma_{MAX} = 100$ MPa)

All the samples have the same hysteretic behavior, being softer at low stress Height loss (0.6 MPa load-50 MPa unload): EI#4 \rightarrow 480 µm (2.4 %) MB & EI#3 \rightarrow 400 µm (2 %)

0

0

Mechanical Measurements at T_{amb} Insulation Thickness ($\sigma_{MAX} = 100$ MPa)

 • Ins. thickness varies mainly at low stress:
 MB
 EI#3
 EI#4

 3 MPa load - 50 MPa load :
 (μm)
 8.4
 9.5
 12

 50 MPa load-100 MPa load:
 (μm)
 6.5
 6.7
 8.2

 $\leftarrow
ightarrow$ larger worsening of HT between 0 and 50 than between 50 and 100 MPa

• Influence of cable-type choice: up to 8 %

• Influence of curing pressure: 2 – 5 %

Mechanical Measurements at T_{amb} Insulation Thickness ($\sigma_{MAX} = 100$ MPa)

Insulation	Cable	Curing pressure	Sum of the	Insulation thickness	loss of insulation
scheme		(MPa)	insulation layers	at 50 MPa during	thickness
			thickness (µm)	unloading (µm)	
MB	01	80	169	138	
MB	01	130	169	130.4	
MB	02	80	169	138.4	
MB	02	130	169	135.6	
MQ	01	80	142.5	109	~~ <i>∠1 %</i> 0
MQ	01	130	142.5	106	
MQ	02	80	142.5	115.5	
MQ	02	130	142.5	112.8	
EI#1	01	80	155	110.3	
EI#1	01	130	155	104.2	
EI#1	02	80	155	114	
EI#1	02	130	155	110.3	
EI#2	01	80	180	129	
EI#2	01	130	180	123.2	
EI#2	02	80	180	130	
EI#2	02	130	180	125	20 0/-
EI#3	01	80	169	120.5	$\sim 20\%$
EI#3	01	130	169	116	
EI#3	02	80	169	129.4	
EI#3	02	130	169	124.9	
EI#4	01	80	194	139.5	
EI#4	01	130	194	134.4	
EI#4	02	80	194	147	
EI#4	02	130	194	144.1	

03/07/2009

Mechanical Measurements at T_{amb} Impact of σ_{MAX} seen by the stack

cable type: 01 insulation schemes: EI#3 and EI#4 --- El#3 - 1st cycle (omay=100 MPa) curing pressure: 130 MPa 120 El#3 - 2nd cycle (omer = 120 MPa) EI#3 - 3rd cycle (0 = 120 MPa) El#3 - 4th cycle (σ_{max} =120 MPa) 100 El#4 - 1st cycle (o_{max}=100 MPa) El#4 - 2nd cycle (o__=120 MPa) Stress (MPa) 80 El#4 - 3rd cycle (o_{max}=120 MPa) El#4 - 4th cycle (o_{max}=120 MPa) 60 -40 20 21.2 21.4 21.6 21.8 20.8 21.0 22.0 Ten-stack height (mm)

Insulation Cable **Ten-stack height** Difference Curing **Ten-stack height** for $\sigma_{max} = 100$ for $\sigma_{max} = 120$ pressure scheme (μm) (MPa) MPa (mm) MPa (mm) MB 01 130 21.460 21.309 120.5 MB 02 130 17.361 17.271 EI#3 01 130 21.172 20.945 198 EI#3 02 130 17.147 16.978 EI#4 01 130 21.540 21.255 250 EI#4 02 130 17.531 17.316 01 130 31 bare 18.783 18.752

Mechanical Measurements at T_{amb} Impact of σ_{MAX} seen by the stack

- Insulation thickness at 50 MPa during unloading, for a maximum stress σ_{max} seen by the stacks of 100 or 120 MPa
- In this case the cable used to make the insulated cables-stacks is different from the cable used to make the bare cables-stack

Insulation	Cable	Curing	Insulation thickness	Insulation thickness	Difference
scheme		pressure	for $\sigma_{max} = 100$ MPa	for $\sigma_{max} = 120$ MPa	(µm)
		(MPa)	(μm)	(µm)	
MB	01	130	133.8	127.9	5.9
EI#3	01	130	119.4	109.7	9.7
EI#4	01	130	137.8	125.2	12.6

Mechanical Measurements at T_{amb} Young's Modulus

 The fit of the stress-strain curves allows to calculate analytically the Young's modulus at 293 K, during the loading and unloading part of the cycle

Mechanical Measurements at T_{amb} Future Investigations

- An arch test is needed to measure the <u>insulation</u> <u>thickness in the coil configuration</u>
- $\circ \sigma_{MAX}$ to be taken into account
- The permanent deformation after a large number of stress cycles (σ_{min} σ_{MAX}) could be determined, as a function of σ_{MAX}
- $\circ~$ Analyze the influence of cycles, time, creep and σ_{MAX} on the Young's modulus
- Eventually perform compression stack tests of different parts of the coil (with relative stress cycle), to obtain local information of the cables mechanical behavior

Mechanical Measurements at 77 K

- Electromechanical apparatus
- Unloaded stack height at 293 K assumed for the strain calculation
- Increase of the elastic modulus and reduction of the hysteresis cycle wrt measurements at room temperature

• Measurements are ongoing (results in the table still preliminary)

Insulation		Curing pressure	Young's modulus	Young's modulus
scheme	Cable	(MPa)	At 293 K (MPa) at 50	At 77 K (MPa) at 50
			MPa during loading	MPa during loading
MB	01	130	6739	
MB	02	130	5870	8199
EI#3	01	130	6568	8323
EI#3	02	130	5689	7390
EI#4	01	130	5536	8239
EI#4	02	130	4834	

Mechanical Measurements Stress Relaxation

(MPa)

Stress

- Measurement of stress relaxation at ambient temperature, at a fixed volume of the cables-stack
 At 3 different values of initial stress:
 - 70, 100 and 130 MPa
- First sample measured starting from 130 MPa: MB insulation, LHC-type cable 02, cured at 130 MPa
- It features a loss of stress of
 ~ 7-10 % during almost 4 days

Conclusions

- The proposed enhanced cable insulation is being characterized from a thermal, electrical and mechanical point of view:
 - The **increased heat transfer capacity** of the proposed insulation (<u>4-5 times better than the LHC standard ones</u>) has been confirmed by steady-state heat transfer measurements at 1.9 K, up to high pressure levels
 - The **electrical tests** on 2-units stacks have shown a satisfactory electrical robustness
 - The **mechanical measurements** aim at determining the conductor dimensions and Young's modulus at room and liquid nitrogen temperature as a function of the applied stress, as well as the cable stress relaxation and thermal contraction
- The proposed enhanced insulation is an ideal candidate for the low-β SC quadrupoles for the phase-I of the LHC upgrade

Back-up slides

Preliminary tests Porous Test (PT) Samples

Manual wrapping (and cut) of the tapes \rightarrow imprecise dimension of the 0 gaps, not uniform wrapping tension

PT#1,2,4

PT#3

Sample	1 st layer	2 nd layer	3 rd layer	4 th layer
PT#1	11 mm wide, 1 mm gap, 25 μm thick	2.5 mm wide, 1.5 mm gap, 75 μm thick, cross wrapped with the other layers	9 mm wide, 3 mm gap 55 μm thick (glue), 50% overlap with the 1 st layer	
PT#2	11 mm wide, 1 mm gap, 50 μm thick	2.5 mm wide, 1.5 mm gap, 50 μm thick, cross wrapped with the other layers	9 mm wide, 3 mm gap 55 μm thick (glue), 50% overlap with the 1 st layer	
PT#3	11 mm wide, 1 mm gap, 25 μm thick	2.5 mm wide, 1.5 mm gap, 50 μm thick, cross wrapped with the 1 st and the 3 rd layers	11 mm wide, 1 mm gap, 50 μm thick, 50% overlap with the 1 st layer	2.5 mm wide, 1.5 mm gap, 55 μm thick (glue), 50% overlap with the 2 nd layer
PT#4	8 mm wide, 2 mm gap, 25 μm thick	2.5 mm wide, 1.5 mm gap, 75 μm thick, cross wrapped with the other layers	9 mm wide, 1 mm gap 55 μm thick (glue), 50% overlap with the 1 st layer	

Radial porosity of the enhanced insulation to air at ambient temperature under 10 MPa: 10 times larger than LHC insulation, 10 times smaller than bare cables
 Ehanced porosity confirmed up to 50 MPa

(1) M. La China, D. Tommasini, "A comparative study of heat transfer from Nb-Ti and Nb3Sn coils to He II", *Physical Review Special Topics - Accelerators and Beams 11,* 082401 (2008). 03/07/2009 Development of the Cable Insulation for the LHC Triplet Upgrade Phase I 37

Preliminary tests Electrical Test ⁽²⁾

- Interturn breakdown voltage measured on stacks made of 2 cables (MB inner layer)
- Each test repeated twice
- Curing cycle: 80 MPa @ 190 °C
- Applied pressure: 50 MPa

Insulation Scheme	Sample 1	Sample 2
LHC MB	> 30 kV	> 25 kV
LHC MQ	> 18 kV	> 20 kV
PT#1	9 kV	8 kV
PT#2	> 15 kV	12 kV
PT#3	> 18-19 kV	12 kV

• The inter-turn breakdown voltage widely exceeds 5 kV in all cases

(2) R. Lopez, "Dielectrical test on different kind of kapton wrapping", CERN AT-MCS NORMA Report, 2008.

03/07/2009

Preliminary tests Heat Transfer Test in 1.9 K bath

300

P (mW/cm³, LHC inner coil volume)

Comparing HT in the CEA sample A34,

⁽³⁾ C. Meuris et al., "Heat transfer in electrical insulation of LHC cables cooled with superfluid helium," Cryogenics, vol. 39, pp. 921–931, 1999. ⁽⁴⁾ D. Richter et al., "Evaluation of the transfer of heat from the coil of the LHC dipole magnet to helium II", IEEE Trans on Appl Sup, vol. 17 no. 2, pp. 1263-1268, June 07. ⁽⁵⁾ D. Tommasini, D. Richter, "A new cable insulation scheme improving heat transfer to superfluid helium in Nb-Ti superconducting accelerator magnets", Proceedings of EPAC-08, Genoa, Italy.

03/07/2009

Fig. 15. Stress σ_w (MPa) at 293 K versus total height l_w (mm) for the outer layer conductor stack, loading with three steps: experimental data and comparison with the monotonic loading curve.

K. Coutourier, P. Ferracin, W. Scandale, E. Todesco, D. Tommasini, "Thermomechanical Properties of the Coil of the Superconducting Magnets for the Large Hadron Collider", *IEEE Transaction on Applied Superconductivity*, vol. 12, no. 2, 2002, pp. 1804-1812.