

LHC Performance up to RunII:

CMS Integrated Luminosity, pp

An extra boost from the injectors

The LHC performance fully relies on the p

 By itself one of the largest accelera diverse and, for many aspects, unique

A **new production scheme** – the **"BCMS"** - was put in place in the PS

- RF cavities tuned at different frequencies play together to compress merge and split bunches
- Beams ~30% brighter than standard scheme

Future of collider searches for Dark Matter, July 28th, Fermilab PLC 14th 2017 Oliver Brüning, CERN

LHC Full Energy Exploitation Study:

Organized in 3 Stages:

- 1) Operation at nominal energy of 7TeV (8.3T)-powering tests in S34 and S45 before EYETS 16/17
 - observation of multiple quenches at high fields
 - observation of a second short to ground after quench
- → Decision to consolidate the LHC diode boxes in LS2 and to plan for 7TeV operation only after LS2
- Operation at ultimate beam energy of 7.56TeV (9T)
 Ongoing and preparing for discussion at Chamonix 2018
- 3) Operation with beam energies beyond 'ultimate'

LHC Energy Exploitation Session

Observations from the training campaign:

Chamonix 2017 Sandrine Le Naour

Multiple magnet quenches during a given training quench event:

- → Multiple training quenches and / or EM coupling (timescale < 1s) + heat propagation at lower current -> multiple quenches!!
- → Possible cascade effect for quenches at higher magnet current!!!

Example: I=11521 A with 6 quenches triggered by nQPS and iQPS

LHC Energy Exploitation Session

Mateusz Bednarek

Unforeseen Obstacles:

Short in the diode box following a training quench:

Earth Fault Burner:

Solution exists and could by now remove a short twice

But there is no guarantee that this method will always work!!!

Possibility of a double short on a given magnet!!!!

(Dut also had 3-0 shorts octore LST)

Risk Assessment:

Should one therefore cure this problem at the root cause?

- → Systematic cleaning and insulation of the diode box!!!
- → Decision for Intervention during LS2 and
- → to stay at 6.5TeV for RunII!!!

LHC Energy Exploitation Session

- All magnets re-tested in SM18 did not show intrinsic limitations to reach 'ultimate' field (including 26MBs from tunnel)
 - Statistical analysis of all training quenches: Gerard Willering
 - 95% of all quenches are 1st quenches (magnets quench only once)

Beam Energy for RunIII:

Probable to push beam energy towards 7 TeV after LS2 for RunIII However, several equipment components might reach their performance limits @ 7TeV

→ needs validation during training campaign after LS2

Performance Projections up to HL-LHC: 14 TeV after LS2 7 & 8 TeV in Runl 13 TeV after LS1 tegrated luminosity 6.0E + 34Run I Run II Run III 3500 **Splices** ≈ 300 fb⁻¹ Injectors 5.0E + 34fixed upgrade \rightarrow Diode Box Energy 2500 4.0E + 34≈ 100 fb⁻¹

Futu

high pile up ~40

or D

25 ns bunch high pile up ~40

hila

very high pile up > 60

ng, CERN

8

HL-LHC technical bottleneck:

Radiation damage to triplet magnets at 300 fb⁻¹

Goal of High Luminosity LHC (HL-LHC):

- # implying an integrated luminosity of 250 fb⁻¹ per year,
 - # design oper. for $\mu \delta 140$ (\rightarrow peak luminosity 5 10³⁴ cm⁻² s⁻¹)
 - Operation with levelled luminosity!
- → 10x the luminosity reach of first 10 years of LHC operation!!

HL-LHC technical bottleneck:

Radiation damage to triplet magnets

Need to replace existing triplet magnets with radiation hard system (shielding!) such that the new magnet coils receive a similar radiation dose @ 10 times higher integrated luminosity!!!!!

Requires larger aperture!

Tungsten blocks

- New magnet technology
- → 70mm at 210 T/m → 150mm diameter 140 T/m 8T peak field at coils → 12T field at coils (Nb₃Sn)!!!

pp colliders – High Field SC Magnets

How High can we go? Livingston plot revisited:

Transition from NbTi to Nb₃Sn:

HL-LH lead the R&D for 11-12T magnets based on Nb₃Sn technology:

Started in earnest in 2004:

→15-25 years R&D program

♦ Nb-Ti operating dipoles; ● Nb3Sn cos test dipoles

■ Nb3Sn block test dipoles 💠 Nb3Sn cos 🖰 LARP QUADs

courtesy: L. Rossi (CERN) from 2011-2012

SC Magnet Technology

■ Nb₃Sn

- HL-LHC with 11-12T
- 16 T for HEP
- Almost a commodity!
 - 15-20 t per year for MRI
 - ITER needs 500 t
- ca x5 cost LHC Nb-Ti
- HTS (needed → 20 T)
 → on going R&D!
 - Bi-2212: cost today2-5x Nb₃Sn
 - YBCO: cost today10x Nb₃Sn

20 T "a I ta revised" design 3662 units (+ 120 spares)

1000 tons of LHC-grade Nb-Ti 3000 tons of HEP-grade Nb₃Sn **750 tons of HTS**

source: L. Rossi from 2011 - 2012

The critical zones around IP1 and IP5

- 3. For collimation we also need to change the DS in the continuous cryostat in IR7: 11T Nb₃Sn dipole
- 2. We also need to modify a large part of the matching section e.g. Crab Cavities & D1, D2
- 1. New triplet Nb₃Sn required due to:
- -Radiation damage
- -Need for more aperture

Changing the triplet region is not enough for reaching the HL-LHC goal!

- → More than 1.2 km of LHC!!
- → Plus technical infrastructure (e.g. Cryo and Powering)!! and major Civil Engineering!!!

LHC Full Energy Exploitation:

Operation at ultimate beam energy: E = 7.56TeV [9T]

All LHC and HL-LHC magnet systems are designed for operation at 'ultimate' field of 9T MB equivalent:

- → MB, MQ, PO, vacuum and cryogenics
- → but this operation mode implies strong reduction or removal of operation margins!

However, not all components are yet ready for operation at 'ultimate beam energy':

- → Beam Dump and Collimation systems among others.
- → This operation mode will require significant upgrades
- → Study still ongoing and results expected for Cham '18

Could perhaps be envisaged for second half of HL-LHC exploitation, after LS4

LHC Full Energy Exploitation:

Operation beyond ultimate beam energy: E > 7.56TeV

Proposal to replace 1/3 of all MB magnets with 11T Nb₃Sn magnets

- → Major interventions [opening of all MB interconnects]
- → Not clear other magnets can be scaled up in energy e.g. insertion quadrupoles and triplet magnets
- → Not clear other systems [e.g. beam dump system] can be easily upgraded

Study ongoing and results expected for end 2018 / beginning 2019

Could perhaps be envisaged as a second LHC upgrade at the end of the HL-LHC exploitation period. But will require significant investment [time, resources and capital]!!!

pp colliders: Future Project Options

- HE-LHC: installation of new 16T magnets in LHC tunnel
- Requires Nb₃Sn magnet technology with 16T peak field:
 Magnet technology not yet at accelerator grade level
 Option for 'post LHC' → 2040ies
 Magnets will be more expensive than those of LHC (x 3-4?)
 Detailed study conducted under the FCC umbrella
 - → results expected by 2018

Would imply ca. 5 years without HEP (LEP LHC took 10)!! Would bring 'only' a factor two in CM collision energy! Would be a technology demonstrator for FCC-hh

pp colliders – High Field SC Magnets

How High can we go? Livingston plot revisited:

Transition from NbTi to Nb₃Sn:

HL-LH lead the R&D for 11-12T magnets based on Nb₃Sn technology: →15-25 years

Push Nb₃Sn and/or Transition to HTS:

R&D program

R&D Assume period of similar length → 2035?

courtesy: L. Rossi (CERN) from 2011-2012

Future Circular p-p collider: Example FCC

Large new infrastructure development:

100 km circumference tunnel infrastructure, e.g. in CERN area

pp colliders: Future Project Options

- FCC-hh: International Study under CERN coordination
- Requires magnet technology with 16T peak field:
 - CDR planned for 2018 in time for next European Strategy

Based on

Main challenges will be:

-Magnet technology → 16T ++

-Cost (installation and operation)

-Power consumption

SppC: C -Operational efficiency for a facility

→ Similar design as FCC-hh:

PCDR published in 2015

Based on 54km (PCDR) circumference

→ options for 78 and 100km considered in 2016

rt LHC

LHC Upgrade Goals: Performance optimization

Luminosity recipe (round beams):

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, S_s)$$

→1) maximize bunch intensities

→ Injector complex

→2) minimize the beam emittance

- Upgrade LIU
- →3) minimize beam size (constant beam power); → triplet aperture
- →4) maximize number of bunches (beam power); →25ns
- →5) compensate for 'F';

→ Crab Cavities

→6) Improve machine 'Efficiency'

minimize number of unscheduled beam aborts

In-kind contributions and collaborations for design and prototypes

First approval as construction Project: Sept. 2013

CC: R&D, Design and in-kind

USA

CC : R&D and Design

UK

Q1-Q3: R&D, Design, Prototypes

and in-kind USA

D1: R&D, Design, Prototypes

and in-kind JP

D2: Design and Prototypes IT

MCBX: Design and Prototype ES

HO Correctors: Design and

Prototypes IT

Q4: Design and Prototype FR

14th 2017 Oliver Brüning, CERN

Performance Projections up to HL-LHC:

UFOs – Unidentified Falling Objects:

- Sudden local losses
- Rise time of the order of 1 ms.
- Potential explanation: dust particles falling into beam creating scatter losses and showers propagating downstream

- Distributed around the ring arcs, inner triplets, IRs
- Even without quench, preventive dumps by QPS

RunII Startup: UFO rates (September 2015)

- There are many UFOs, a significant number > 1% of threshold
- 0.07% of all UFOs actually dump the beam
- □ Slight signs of conditioning when normalizing rate by the total number of bunches

Extended Year End Technical Stop '16/'17:

Requested by Experiments:

CMS → replacement of the pixel detector

LHC machine:

- -De-cabling campaign in the PSB and SPS for LIU
- -New internal beam dump for SPS (vacuum leak in 2016)
- -Training campaign towards 7TeV of 2 sectors: S34 and S45
- -Magnet exchange in Sector 12
- Later startup for 2017 operation

Luminosity production as of June (compared to May in '16)

