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• What is a "track trigger"?

• Physics motivations for track triggers

• Current generation of track trigger in ATLAS: FTK

• System design and performance

• Track triggers for the High-Lumi LHC (Phase-II upgrade)

• Upgrade design goals and current concepts

Outline
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What is a "track trigger"?

Consider current layout of the ATLAS trigger (a 2-level system)

Level 1: 
implemented in hardware
reduces rate to 100kHz

(L1calo & L1muon)

High-level Trigger (HLT): 
implemented in CPUs

steps to final rate ~1kHz
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Software tracking

Consider current layout of the ATLAS trigger (a 2-level system)

Level 1: 
implemented in hardware
reduces rate to 100kHz

(L1calo & L1muon)

High-level Trigger (HLT): 
implemented in CPUs

steps to final rate ~1kHz
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We currently use tracks in the trigger, 

though only in software (HLT) 

Many HLT track users include:
electrons, muons, & taus (ID and isolation)

 as well as jets (b-tagging & calibration)
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Drawbacks

Consider current layout of the ATLAS trigger (a 2-level system)

Level 1: 
implemented in hardware
reduces rate to 100kHz

(L1calo & L1muon)

High-level Trigger (HLT): 
implemented in CPUs

steps to final rate ~1kHz
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Limited to the HLT rate 
All events must first pass a L1 seed trigger

from the calo or muon systems

Tracking is CPU-intensive!
Limited to tracking in small regions 

for a fraction of events

5 Herwig (Pennsylvania)



Track trigger

Consider current layout of the ATLAS trigger (a 2-level system)

Level 1: 
implemented in hardware
reduces rate to 100kHz

(L1calo & L1muon)

High-level Trigger (HLT): 
implemented in CPUs

steps to final rate ~1kHz
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Partially solve problems w/ hardware track trigger

But still face system constraints 
(data volume, latency,…)

So one must make choices, e.g.:
4 GeV tracks in the full-detector, or
1 GeV tracks in regions of interest?

Which rate?
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Physics motivations for track triggers

Crucial for many signatures: 
hh→4b, h→bb (VBF), etc.

2017 4-jet thresholds:
35 GeV w/ b-tag

120 GeV w/o b-tag
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With b-tagging, trigger is CPU-limited,
using 15% of HLT resources!

• b-tagging

• MET (soft term)

• jet energy calibration

• pileup subtraction

• Much more!
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Physics motivations for track triggers

 (offline, no muons) [GeV]miss
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ATLAS Preliminary

MET very difficult in the trigger,
must get calculate energy over entire detector

poor resolution = "wasted" rate

• b-tagging

• MET (soft term)

• jet energy calibration

• pileup subtraction

• Much more!
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Physics motivations for track triggers

track-based soft term can significantly 
improve resolution
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tracks can also help ID hard objects 
coming from the primary vertex

• b-tagging

• MET (soft term)

• jet energy calibration

• pileup subtraction

• Much more!
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Physics motivations for track triggers

forward tracking brings 
substantial improvement

• b-tagging

• MET (soft term)

• jet energy calibration

• pileup subtraction

• Much more!
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Physics motivations for track triggers

Nov 28, 2016 Jet Trigger Signature Group

GSC performance plot

5
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Preliminary

Offline

Calorimeter response varies w/shower shape

Track-based corrections reduce wasted rate

Common theme for hadronic triggers!

• b-tagging

• MET (soft term)

• jet energy calibration

• pileup subtraction

• Much more!
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Calorimeter response varies w/shower shape

Track-based corrections reduce wasted rate

Physics motivations for track triggers

Nov 28, 2016 Jet Trigger Signature Group

GSC performance plot
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Offline

Common theme for hadronic triggers!

Could use this on ALL jets!

• b-tagging

• MET (soft term)

• jet energy calibration

• pileup subtraction

• Much more!
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Physics motivations for track triggers
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improves jet energy resolution 

pileup increasingly important 

• b-tagging

• MET (soft term)

• jet energy calibration

• pileup subtraction

• Much more!
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Physics motivations for track triggers

• b-tagging

• MET (soft term)

• jet energy calibration

• pileup subtraction

• Much more!

VBF triggers
w/ quark-tagging?

hadronic taus
h→𝜏𝜏, hh→𝜏𝜏bb

SUSY: direct staus

Your new ideas from 
DM@LPC workshop???

novel signatures?
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Track triggers in 2017

• ATLAS has already built the Fast TracKer (FTK) system

• Running in "commissioning mode" for 2017

• Designed with 
associative memory 
(AM) technology

• Built to deliver tracks 
(1 GeV, full-scan) at 100 
kHz, up to lumi of 
3x1034 cm-2s-1

• Full tracking available to 
all HLT algorithms
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AM track trigger concept
• No real time track-finding, instead pre-store coarse tracks and 

lookup based on silicon hits

• Coarse tracks seed more precise "track-fitting" step

• Full procedure consists of two essential parts

• Pattern matching 

• Group detector elements into super-strips

• Build patterns out of the super-strips

• Track fitting 

• Read all detector elements hits from matched patterns

• Perform a linear fit from {xi} → {pT, eta, phi, d0, z0}
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Consider a toy model slice of a detector

R

ɸ

"pixel layers"

"strips"
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Detector elements are grouped into super-strips

A single
Super-Strip

built from many 
detector elements
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Tracks impinge the detector, leaving hits in the super-strips

consider 
single muons
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Bank generation
tracks → patterns

FTK in data-taking
patterns → tracks

A set of super-strips (1 per layer) defines a pattern
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Bank generation
tracks → patterns

FTK in data-taking
patterns → tracks

Generate billions of muons to create a bank of patterns
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IP
x1, y1

x2, y2

x3, y3

x6

x7

x8

x5

x4

Each hit gives 
1 or 2 coordinates

y1

x1

Perform linear fit
{xi} → {qi} = {pT, eta, phi, d0, z0}

qi = Cijxj + q0i

Locally defined
 fit constants

Look 
inside 
each 
super
-strip
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FTK details
• FTK designed to operate in two stages,

• Pattern+fits using 8-layers (IBL+2pix+5strips) w/ ≥ 7 hit

• Roads extrapolated to full 12 layers (req 3 of 4 add’l layers 
hit) and second track fit performed

• Parallelization: detector divided into 64 "towers" working 
independently on different detector regions

a barrel tower

per tower:
16.8M patterns
16k roads max
80k fits max

in total:
a billion patterns!
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FTK details

an endcap tower

• FTK designed to operate in two stages,

• Pattern+fits using 8-layers (IBL+2pix+5strips) w/ ≥ 7 hit

• Roads extrapolated to full 12 layers (req 3 of 4 add’l layers 
hit) and second track fit performed

• Parallelization: detector divided into 64 "towers" working 
independently on different detector regions

per tower:
16.8M patterns
16k roads max
80k fits max

in total:
a billion patterns!
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the detector

Precise pT measurement 
key for single leptons, 

MET soft term, all

Develop banks and algorithms to meet physics goals, 
while respecting hardware constraints
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Towards physics goals w/ FTK

z0, d0 impact parameters 
critical for track-vertex 

association (MET, multijets) 
and displaced vertex ID

precise d0 measurement 
crucial for b-tagging

can refit tracks if desired

Develop banks and algorithms to meet physics goals, 
while respecting hardware constraints
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can refit tracks if desired

Develop banks and algorithms to meet physics goals, 
while respecting hardware constraints
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refined bank
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tracks → patterns

FTK in data-taking
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Generate billions of muons to create a bank of patternsTwo
patterns?
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to maintain performance 
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variable-sized patterns: 
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Generate billions of muons to create a bank of patterns
Or one?
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Towards the High-Lumi HLC (HL-LHC)

• Expect average of 200 collisions / crossing starting ~2026

• Ultimately will collect 3000/fb of data (had 30/fb in 2016 !)

• ATLAS detector being upgraded to take full advantage

• new all-silicon tracker, extending to very forward region

• Track trigger essential to identifying activity from the primary 
vertex

Wednesday, 5 October 2016 Noemi Calace - ECFA Workshop 17

A T L A S  C O L L A B O R A T I O N U N I V E R S I T É  D E  G E N È V E

The Inclined Layout Concept

Mean number of hits per track as a function of η 
for single muons with p

T
=10 GeV

Composition of the simulated material 
in radiation lengths as a function of |η|

→ The Inclined Layout provides 
many hits at large |η| close to the 
beam spot
● Using the same ring system of the 

extended layout, it provides more hits 
compared to the extended option in 
the forward region

• New all-silicon tracker, ATLAS Inner 
Tracker (ITK),  will be replacing inner 
detector 
 

• New calorimeter front-end electronics 
will be replaced to send finer 
granularity information to trigger at 40 
MHz  
 

• Muon spectrometers will be upgraded 
to include: new small wheel to reject 
fake muons, new resistive plate 
chambers for larger acceptance,  use 
of muon drift tubes in 1st level muon 
trigger 
 

• FTK ++ is an upgraded version of FTK 
with newer FPGAs and larger number 
of patterns 
• Will act as HLT co-processor 

providing tracks when HLT requests 
them 

 
 
 
 
 

 
 

25 

Tracking at High Luminosity LHC 
The upgrade of 
the muon 
spectrometer 
driven by the 
need for a highly 
efficient and 
selective single 
muon trigger: 
New small 
wheel to reject 
fake muon 
trigger. New 
RPCs in the 
inner barrel to 
maximize 
acceptance. 
Inclusion of 
MDT data in the 
1st level muon 
trigger to 
maximize 
selectivity 
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Towards the High-Lumi HLC (HL-LHC)

• Expect average of 200 collisions / crossing starting ~2026

• Ultimately will collect 3000/fb of data (had 30/fb in 2016 !)

• ATLAS detector being upgraded to take full advantage

• new all-silicon tracker, extending to very forward region

• Track trigger essential to identifying activity from the primary 
vertex• New all-silicon tracker, ATLAS Inner 

Tracker (ITK),  will be replacing inner 
detector 
 

• New calorimeter front-end electronics 
will be replaced to send finer 
granularity information to trigger at 40 
MHz  
 

• Muon spectrometers will be upgraded 
to include: new small wheel to reject 
fake muons, new resistive plate 
chambers for larger acceptance,  use 
of muon drift tubes in 1st level muon 
trigger 
 

• FTK ++ is an upgraded version of FTK 
with newer FPGAs and larger number 
of patterns 
• Will act as HLT co-processor 

providing tracks when HLT requests 
them 
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Phase-II trigger designs

3-level system

level output 
rate track params name

L0 4 MHz - - -

L1 400 kHz regional 4 GeV L1track

HLT 10 kHz full-scan 1 GeV FTK++

2-level system

level output 
rate track params name

L0 1 MHz - - -

HLT 10 kHz
regional 2 GeV EFtrack

full 1 GeV FTK++

• Investigating new track-trigger based on the AM chip concept

• Must handle tracks up to 𝜂=4 and a 15cm beamspot

• Nominal design is a 2-level system w/ hardware tracking

• Potential to evolve to a 3-level system

• Some choices remain; progressing towards a design
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L1 track studies
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 > = 200µ < 0.3,   < ηRoI 0.1 < 
L1 Track selection on L0 MU20 (Strips only)

T
Strategy A: Max p

2χ of the 2 best 
T

Strategy B: Max p
2χ of best 

T
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ATLAS Simulation Preliminary

 > = 200µ < 0.3,   < ηRoI 0.1 < 
L1 Track selection on L0 EM18 (Strips only)

T
Strategy A: Max p

2χ of the 2 best 
T

Strategy B: Max p
2χ of best 

T
Strategy C: p

Detector layers q/pT [e/GeV] �[rad] ⌘ d0 [mm] z0 [mm]

Strip layers only 0.003 0.001 0.002 0.3 1.7

Strip + 1 pixel layer 0.003 0.001 0.001 0.2 0.3

• L1track studies produced banks 
of 4 GeV tracks in 0.2x0.2 ROIs

• Studied "strips+pixel" = "8+0" 
and "7+1" layout 

• Track pT requirement targets 
5x rate reduction

• Pixels layer usage improves z0 by 
1.7→0.3mm

• z0 goal set by multijet triggers
• vertex-matching reduces rate 

from coincident dijets
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L1 track studies
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Much work to be done!
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Our sensitivity to benchmark 
HL-LHC signatures relies on 

aggressive track triggers!
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Hardware track triggers offer significant improvements over 
traditional systems for a variety of physics signatures

Their utility increases significantly 
with upgraded machine luminosity

ATLAS FTK is running in "commissioning mode" for 2017 —
crucial as the LHC continues to break lumi records

Track triggers will be central to the 
Phase-II TDAQ system for HL-LHC

Crucial to enable everything from benchmark 
physics searches to new ideas, yet-to-be thought up!

Conclusions
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Backup
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# of fits
/ tower

Adapting to high-pileup environment

options to toggle in order 
to maintain performance 

with large pileup

variable-sized patterns: 
number and regions

of 'ternary bits'

pattern mergingefficiency smoothing
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Potential Phase-II TDAQ schematic

41

 
 

• L0 trigger will be 
introduced to provide 
tracking information in 
regions of interest from 
ITK, will operate at 1MHz, 
latency 6 µs 
 

• L1 trigger reduce rate to 
400 kHz, latency 24 µs 
• L1 track trigger is 

complimentary to FTK++ 
and will perform tracking 
in regions of interest  for 
tracks with momentum 
>4/8 GeV 

• L1Global trigger will 
process finer granularity 
calorimeter information to 
improve 
electron/photon/tau/jets 
measurement 
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Physics motivations for track triggers
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s  = 13 TeV

Anti-k  EM+JES R=0.4
|η| < 2.1, 150 GeV < pT < 200 GeV

CNN Truth Particles
CNN Topo Clusters
CNN EM Towers
CNN Topo Clusters + Tracks
CNN EM Towers + Tracks

For example:
build a VBF trigger, 
w/ quark-tagging?
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Ternary bit merging

● Patterns which differ only at the ternary bit positions can be packed into a single
AM address

● Example: a pattern with N
X
=3 changes to N

X
=5 after adding another pattern

Pattern already stored
in pattern bank

New pattern to be
merged

Merged pattern →
update pattern bank
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Ternary bits and Gray code

● For each AM chip address: hits
are stored in eight layers, one 15-
bit word per layer 

● Of the 15 bits, 3 bits are ternary

● Ternary bit can encode three
settings: 0, 1, X = {0 or 1}

● Ternary bits → many patterns can
be saved in one address

● Shown here: a selection of
superstrip sizes and positions
which can be encoded using 3
ternary bits

45


