

Track Triggers

Christian Herwig
University of Pennsylvania

Future of collider searches for Dark Matter at the LPC July 27-28, 2017

Outline

- What is a "track trigger"?
 - Physics motivations for track triggers
- Current generation of track trigger in ATLAS: FTK
 - System design and performance
- Track triggers for the High-Lumi LHC (Phase-II upgrade)
 - Upgrade design goals and current concepts

What is a "track trigger"?

Consider current layout of the ATLAS trigger (a 2-level system)

Level I:

implemented in hardware reduces rate to 100kHz (L1calo & L1muon)

High-level Trigger (HLT): implemented in CPUs steps to final rate ~IkHz

Software tracking

Drawbacks

em) Limited to the HLT rate All events must first pass a LI seed trigger from the calo or muon systems imple **Detector** Read-Out **Tracking is CPU-intensive!** redu Limited to tracking in small regions for a fraction of events low stem (ROS) tral Trigger Level-1 High-level Trigger (HLT): **Data Collection Network Fast TracKer** (FTK) implemented in CPUs **High Level Trigger Data Storage** steps to final rate ~ IkHz (HLT) Accept Processors O(28k) Tier-0

Track trigger

Partially solve problems w/ hardware track trigger em) But still face system constraints (data volume, latency,...) imple **Detector** Read-Out So one must make choices, e.g.: redu 4 GeV tracks in the full-detector, or I GeV tracks in regions of interest? low Which rate? stem (ROS) **Central Trigger** Level-1 High-level Trigger (HLT): **Data Collection Network** implemented in CPUs **High Level Trigger Data Storage** (HLT) steps to final rate ~ | kHz Processors O(28k) **Event** Tier-0

b-tagging

Crucial for many signatures: $hh\rightarrow 4b, h\rightarrow bb$ (VBF), etc.

2017 4-jet thresholds: 35 GeV w/ b-tag 120 GeV w/o b-tag

With b-tagging, trigger is CPU-limited, using 15% of HLT resources!

MET very difficult in the trigger, must get calculate energy over entire detector

- b-tagging
- MET (soft term)

poor resolution = "wasted" rate

track-based soft term can significantly improve resolution

- b-tagging
- MET (soft term)

tracks can also help ID hard objects coming from the primary vertex

- b-tagging
- MET (soft term)

forward tracking brings substantial improvement

Calorimeter response varies w/shower shape

- b-tagging
 Track-based corrections reduce wasted rate
 - MET (soft term)
 - jet energy calibration

Common theme for hadronic triggers!

Calorimeter response varies w/shower shape

b-tagging

- Track-based corrections reduce wasted
- MET (soft term)
- jet energy calibration

Common theme for hadronic triggers!

- b-tagging
- MET (soft term)
- jet energy calibration
- pileup subtraction

pileup increasingly important

constituent-level pileup suppression improves jet energy resolution

b-tagging

MET (soft term)

jet energy calibration

pileup subtraction

Much more!

hadronic taus

 $h \rightarrow \tau \tau$, $hh \rightarrow \tau \tau bb$

SUSY: direct staus

VBF triggers w/ quark-tagging?

novel signatures?

trigger-level analyses

Your new ideas from DM@LPC workshop???

Track triggers in 2017

- ATLAS has already built the Fast TracKer (FTK) system
- Running in "commissioning mode" for 2017
- Designed with associative memory (AM) technology
- Built to deliver tracks
 (I GeV, full-scan) at 100
 kHz, up to lumi of
 3x10³⁴ cm⁻²s⁻¹
- Full tracking available to all HLT algorithms

AM track trigger concept

- No real time track-finding, instead pre-store coarse tracks and lookup based on silicon hits
 - Coarse tracks seed more precise "track-fitting" step
- Full procedure consists of two essential parts
 - Pattern matching
 - Group detector elements into super-strips
 - Build patterns out of the super-strips
 - Track fitting
 - Read all detector elements hits from matched patterns
 - Perform a linear fit from $\{x_i\} \rightarrow \{p_T, eta, phi, d_0, z_0\}$

Consider a toy model slice of a detector

Tracks impinge the detector, leaving hits in the super-strips

Herwig (Pennsylvania)

A set of super-strips (I per layer) defines a pattern

Generate billions of muons to create a bank of patterns

Look inside each super -strip **X**3, **Y**3 **X**2, **Y**2

Each hit gives I or 2 coordinates

Perform linear fit

$$\{x_i\} \rightarrow \{q_i\} = \{p_T, eta, phi, d_0, z_0\}$$

$$q_i = C_{ij}x_j + q^0_i$$

Locally defined fit constants

FTK details

- FTK designed to operate in two stages,
 - Pattern+fits using 8-layers (IBL+2pix+5strips) w/ \geq 7 hit
 - Roads extrapolated to full 12 layers (req 3 of 4 add'l layers hit) and second track fit performed
- Parallelization: detector divided into 64 "towers" working independently on different detector regions

per tower:
16.8M patterns
16k roads max
80k fits max

in total: a billion patterns!

Herwig (Pennsylvania)

FTK details

- FTK designed to operate in two stages,
 - Pattern+fits using 8-layers (IBL+2pix+5strips) w/ \geq 7 hit
 - Roads extrapolated to full 12 layers (req 3 of 4 add'l layers hit) and second track fit performed
- Parallelization: detector divided into 64 "towers" working independently on different detector regions

per tower:
16.8M patterns
16k roads max
80k fits max

in total: a billion patterns!

Herwig (Pennsylvania)

Towards physics goals w/ FTK

Develop banks and algorithms to meet physics goals, while respecting hardware constraints

FTK reaches near-offline efficiency (>90%) across the detector

Precise p_T measurement key for single leptons, MET soft term, all

Towards physics goals w/ FTK

Develop banks and algorithms to meet physics goals, while respecting hardware constraints

z₀, d₀ impact parameters critical for track-vertex association (MET, multijets) and displaced vertex ID

precise d₀ measurement crucial for b-tagging

Towards physics goals w/ FTK

Develop banks and algorithms to meet physics goals, while respecting hardware constraints

z₀, d₀ impact parameters critical for track-vertex association (MET, multijets) and displaced vertex ID

precise d₀ measurement crucial for b-tagging

can refit tracks if desired

options to toggle in order to maintain performance with large pileup

variable-sized patterns: number and regions of 'ternary bits'

efficiency smoothing

pattern merging

options to toggle in order to maintain performance with large pileup

efficiency smoothing

variable-sized patterns: number and regions of 'ternary bits'

pattern merging

options to toggle in order to maintain performance with large pileup

variable-sized patterns: number and regions of 'ternary bits'

efficiency smoothing

pattern merging

Or one?

Towards the High-Lumi HLC (HL-LHC)

- Expect average of 200 collisions / crossing starting ~2026
 - Ultimately will collect 3000/fb of data (had 30/fb in 2016!)
- ATLAS detector being upgraded to take full advantage
 - new all-silicon tracker, extending to very forward region
- Track trigger essential to identifying activity from the primary vertex

Herwig (Pennsylvania)

Towards the High-Lumi HLC (HL-LHC)

- Expect average of 200 collisions / crossing starting ~2026
 - Ultimately will collect 3000/fb of data (had 30/fb in 2016!)
- ATLAS detector being upgraded to take full advantage
 - new all-silicon tracker, extending to very forward region

Track trigger essential to identifying activity from the primary

vertex

Phase-II trigger designs

- Investigating new track-trigger based on the AM chip concept
 - Must handle tracks up to η =4 and a 15cm beamspot
- Nominal design is a 2-level system w/ hardware tracking
 - Potential to evolve to a 3-level system
 - Some choices remain; progressing towards a design

	3-	3-level system			
level	output rate	track params		name	leve
LO	4 MHz	-	_	_	LO
L1	400 kHz	regional	4 GeV	L1track	HIT
HLT	10 kHz	full-scan	1 GeV	FTK++	

2-level system							
level	output rate	track pa	name				
LO	1 MHz			-			
HLT	10 kHz	regional	2 GeV	EFtrack			
I ILI		full	1 GeV	FTK++			

LI track studies

- LItrack studies produced banks of 4 GeV tracks in 0.2x0.2 ROIs
- Studied "strips+pixel" = "8+0" and "7+1" layout
- Track p_T requirement targets
 5x rate reduction

Detector layers	$q/p_T [{\rm e/GeV}]$	$\phi[rad]$	η	$d_0 [\mathrm{mm}]$	$z_0 [\mathrm{mm}]$
Strip layers only	0.003	0.001	0.002	0.3	1.7
Strip + 1 pixel layer	0.003	0.001	0.001	0.2	0.3

- Pixels layer usage improves z₀ by
 1.7→0.3mm
- z₀ goal set by multijet triggers
 - vertex-matching reduces rate from coincident dijets

LI track studies

- LItrack studies produced banks of 4 GeV tracks in 0.2x0.2 ROIs
- Studied "strips+pixel" = "8+0" and "7+1" layout
- Track p_T requirement targets
 5x rate reduction

Detector layers	$q/p_T [{\rm e/GeV}]$	$\phi[rad]$	η	$d_0 [\mathrm{mm}]$	$z_0 [\mathrm{mm}]$
Strip layers only	0.003	0.001	0.002	0.3	1.7
Strip + 1 pixel layer	0.003	0.001	0.001	0.2	0.3

- Pixels layer usage improves z₀ by
 1.7→0.3mm
- z₀ goal set by multijet triggers
 - vertex-matching reduces rate from coincident dijets

Herwig (Pennsylvania)

Much work to be done!

Our sensitivity to benchmark HL-LHC signatures relies on aggressive track triggers!

Conclusions

Hardware track triggers offer significant improvements over traditional systems for a variety of physics signatures

Their utility increases significantly with upgraded machine luminosity

ATLAS FTK is running in "commissioning mode" for 2017 — crucial as the LHC continues to break lumi records

Track triggers will be central to the Phase-II TDAQ system for HL-LHC

Crucial to enable everything from benchmark physics searches to new ideas, yet-to-be thought up!

Backup

options to toggle in order to maintain performance with large pileup

variable-sized patterns: number and regions of 'ternary bits'

barrel towers endcap towers

efficiency smoothing

pattern merging

FTK track quality

Potential Phase-II TDAQ schematic

Quark Jet Efficiency

For example: build a VBF trigger, w/ quark-tagging?

Ternary bit merging

- Patterns which differ only at the ternary bit positions can be packed into a single AM address
- Example: a pattern with $N_x=3$ changes to $N_x=5$ after adding another pattern

Ternary bits and Gray code

- For each AM chip address: hits are stored in eight layers, one 15bit word per layer
- Of the 15 bits, 3 bits are ternary
- Ternary bit can encode three settings: 0, 1, X = {0 or 1}
- Ternary bits → many patterns can be saved in one address
- Shown here: a selection of superstrip sizes and positions which can be encoded using 3 ternary bits

Three ternary bits encode one of eight positions or combinations of 2,4,8 positions

Position (binary, Gray-coded):

Selected combinations with one bit set to X

Selected combinations with two bits set to X

All three bits set to X

Connecting the Dots, March 2017

S.Schmitt, pattern recognition with ternary bits