Mining LHC Data
 Matthew R Buckley
 Rutgers University

Future of collider searches for Dark Matter
LPC, July 2017

New Physics?

- Where is it?

New Physics?

- Where is it?

New Physics?

What No New Particles Means for Physics

Physicists are confronting their "nightmare scenario." What doe.
new particles suggest about how nature works?

The New Hork eimes
A Crisis at the Edge of Physics

Gray Matter

By ADAM FRANK and MARCELO GLEISER JUNE 5, 2015

In Theory: Is theoretical physics in crisis?

by Harriet Jarlett
-

Slicing up Data

- ATLAS and CMS data divided up by topology (number of leptons, fat-jets, etc.)
- Then subdivided by kinematics into signal regions

ATLAS-CONF-2017-022

Setting Limits

- Limits are model-dependent.
- Model tells us which how to combine the statistical pull of each signal region.

Residuals in data

Events predicted in

$$
p p \rightarrow \tilde{q} \tilde{q}^{*} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}
$$

CMS036: number of signal events $-1 \leq N_{j} \leq 3, N_{b}=0$

Setting Limits

- A search can have many statistically significant excesses over background and still have observed limits equal expected
- For a particular model
- Have we looked at all models?

Rectangular Aggregations

- Signal likely to be distributed in "nearby" signal regions
- Model kinematics, ISR/FSR, detector resolution,...
- Consider all possible "rectangular aggregations" of signal regions to look for signal over background.
- Best for non-overlapping SRs
- CMS searches

Correlations

$$
\mathcal{L}(\mu, \theta)=\prod_{i} \frac{\left(\mu s_{i}+b_{i}+\theta_{i}\right)_{i}^{n} e^{-\left(\mu s_{i}+b_{i}+\theta_{i}\right)}}{n_{i}!} \exp \left(-\frac{1}{2} \theta^{T} V^{-1} \theta\right)
$$

- We're calculating $\Delta \log \mathcal{L}$, marginalizing over the background uncertainties θ_{i} (nuisance parameters)
- Assuming signal populates only one RA at a time.
- CMS now publishing correlation/covariance matrices (thanks, CMS!)
- When we define a rectangular aggregation:

$$
V_{R}=\left(\begin{array}{cc}
\sum_{i, j \in R} V_{i j} & \sum_{i \in R} V_{i J} \\
\sum_{i \in R} V_{i J} & V_{I J}
\end{array}\right)
$$

Jets + MET

- Concentrate on jets + MET searches as proof-of-principle

CMS-SUS-16-033
$N_{j}, N_{b}, \mathbb{E}_{T}, H_{T}$
174 SRs, ~ 7000 RAs

CMS-SUS-16-036
$N_{j}, N_{b}, \mathbb{L}_{T}, M_{T 2}$ 213 SRs, ~ 33000 RAs

- ATLAS-PAS-17-022 has overlapping SRs
- CMS-EXO-16-048 has 1D SRs $\left(\mathbb{E}_{T}\right)$, this technique overkill
- Apply RA technique, assuming signal populates one rectangle and nowhere else.

Aggregating for Anomalies

- We're interested in excesses over background.
- Keep anything with p-value $<1 \% N_{\sigma}>2.6$

CMS-SUS-16-033

ROI	bins	N_{j}	N_{b}	$H_{T}(\mathrm{GeV})$	$H_{T}^{\mathrm{miss}}(\mathrm{GeV})$	N_{σ}
1	13,16, 23,26, 43,46, 53,56, 63,66	2-4	≥ 1	> 1000	$300-500$	3.11
	13,16, 23,26, 43,46, 53,56	2-4	1-2	> 1000	$300-500$	2.77
	$13,16,43,46,83,86,120,122$	2-8	1	> 1000	$300-500$	2.65
	21-26, 51-56, 61-66	2-4	≥ 2	>300	$300-500$	2.64
a	1, 4, 31, 34, 71, 74	2-6	0	$300 *-500$	$300-500$	2.96
b	71, 74, 81, 84	5-6	0-1	$300 *-500$	$300-500$	2.70
c	1, 4, 31, 34	2-4	0	$300^{*}-500$	$300-500$	2.64
d	31, 34, 71, 74	3-6	0	$300^{*}-500$	$300-500$	2.57
$3 \begin{gathered}\text { a } \\ \text { b }\end{gathered}$	125-126	7-8	1	>750	>750	2.81
	126	7-8	1	> 1500	>750	2.73

CMS-SUS-16-036

ROI	bins	N_{j}	N_{b}	$H_{T}(\mathrm{GeV})$	$M_{T 2}(\mathrm{GeV})$	N_{σ}	
a	$126-130,132-136$	$2-3$	$0-1$	$1000-1500$	≥ 400	3.5	
b	$126-127,132-133$	$2-3$	$0-1$	$1000-1500$	$400-800$	3.36	
1	c	$126-127$	$2-3$	0	$1000-1500$	$400-800$	3.09
	d	$127-130,133-136$	$2-3$	$0-1$	$1000-1500$	≥ 600	2.68
	e	126,132	$2-3$	$0-1$	$1000-1500$	$400-600$	2.57
	a	$1,2,8,9,13,16$	$1-3$	$0-1$	$250-450$	$200-300$	3.3
	b	$1,2,13$	$1-3$	0	$250-450$	$200-300$	2.95
2	c	$1,8,13,16$	$1-3$	$0-1$	$250-450^{*}$	$200-300$	2.93
	d	1,13	$1-3$	0	$250-450^{*}$	$200-300$	2.74
	e	$1,2,8,9$	1	$0-1$	$250-450$	-	2.6
	a	12,79	$1-3$	1	$575^{\dagger}-1000$	$200-300$	3.03
3	b	79	$2-3$	1	$575-1000$	$200-300$	2.84
4		$44,45,60,61$	$2-6$	2	$450-575$	≥ 400	2.76
5		99	$4-6$	1	$575-1000$	$300-400$	2.75

Reality Checks

- Obviously, most of these excesses aren't due to new physics.
- Can eliminate those in tension with equivalent regions in other jet+MET search (033 $\leftrightarrow 036)$.
- Can further eliminate those that should have excesses in neighboring SRs

Surviving Anomalies

- Two in each search
- One in each are particularly interesting CMS-SUS-16-033

CMS-SUS-16-036

ROI	bins	N_{j}	N_{b}	$H_{T}(\mathrm{GeV})$	$H_{T}^{\text {miss }}(\mathrm{GeV})$	N_{σ}	compatible?
a	13,16, 23,26, 43,46, 53,56, 63,66	2-4	≥ 1	> 1000	$300-500$	3.11	X N_{j}, N_{b}
b	13,16, 23,26, 43,46, 53,56	2-4	1-2	> 1000	$300-500$	2.77	\checkmark
cd	13,16, 43,46, 83, $86,120,122$	2-8	1	> 1000	$300-500$	2.65	$X N_{j}$
	21-26, 51-56, 61-66	2-4	≥ 2	> 300	$300-500$	2.64	$\chi N_{j}, N_{b}$
$\begin{array}{r} \mathrm{a} \\ 2 \begin{array}{c} \mathrm{b} \\ \mathrm{c} \\ \mathrm{~d} \end{array} \\ \hline \end{array}$	1, 4, 31, 34, 71, 74	2-6	0	$300 *-500$	$300-500$	2.96	\checkmark
	71, 74.81.84	$5-6$	$\underline{1}$	300* 500	$300-500$	2.70	\checkmark
	1, 4, 31, 34	2-4	0	$300 *-500$	$300-500$	2.64	1
	31, 34, 11,7			$300=500$	$300-500$	2.57	\checkmark
$3^{\text {a }}$	125-126	$7-8$	1	>750	> 750	2.81	X
	126	7-8	1	> 1500	>750	2.73	j

ROI	bins	N_{j}	N_{b}	$H_{T}(\mathrm{GeV})$	$M_{T 2}(\mathrm{GeV})$	N_{σ}	compatible?
a	126-130, 132-136	$2-3$	0-1	1000-1500	≥ 400	3.5	$\boldsymbol{*} E_{T}$
b	126-127, 132-133	$2-3$	0-1	1000-1500	$400-800$	3.36	
1 c	126-127	$2-3$	0	$1000-1500$	$400-800$	3.09	
d	127-130, 133-136	$2-3$	0-1	1000-1500	≥ 600	2.68	
e	126, 132	$2-3$	0-1	1000-1500	$400-600$	2.57	
a	1, 2, 8, 9, 13.16.	$1-3$	01	$250-150$	$200-300$	3.3	$* N_{b}$
b	1, 2, 13	1-3	0	$250-450$	$200-300$	2.95	$\sqrt{3}$
	8, 13,1			$0-400$	200-300	2.93	* N_{b}
d	1, 13	1-3	0	$250-450$ *	200-300	2.74	\checkmark
e	1, 2, 8, 9	1	0-1	250-450	-	2.6	$\boldsymbol{*} N_{b}$
a	12, 79	1-3	1	$575^{\dagger}-1000$	$200-300$	3.03	
b	79	$2-3$	1	$575-1000$	$200-300$	2.84	
4	44, 45, 60, 61	2-6	2	$450-575$	≥ 400	2.76	$X H_{T}$
5	99	4-6	1	$575-1000$	$300-400$	2.75	$X M_{T 2}$

"Mono-Jet" Excess

aggregation (significance)	N_{j}	N_{b}	$H_{T}(\mathrm{GeV})$	$M_{T 2}, \boldsymbol{E}_{T}(\mathrm{GeV})$
CMS036 \#2b (2.95σ)	$1-3$	0	$250-450$	$200-300$
CMS033 \#2c (2.64σ)	$2-4$	0	$300-500$	$300-500$

"Mono-Jet" Excess

- What models fit this excess?
- Go back to the full analysis, using all data in all SRs
- MSSM is not a good fit (as expected)
- We considered three models in depth:

squark/neutralino

mono- ϕ

vector-mediated dark matter

Simulation Pipeline

Analysis code available on arxiv for those interested

Successful Models

- Vector-mediated dark matter \& squark/neutralino spill out into too many other SRs

Successful Models

- The mono- ϕ model appears to work well.

Mono- ϕ

- Color triplet, decaying to quark + MET
- "RPV-MSSM"-ish, but problems with Majorana masses
- This model is preferred at $\sim 3 \sigma$ in CMS-036.
- Tension with CMS-048
- ATLAS-2017-022 has $\sim 1.5 \sigma$ preference. $\sim 3.5 \sigma$ combined

Look-Elsewhere

- Having looked in 33,000 rectangles, are we guaranteed to find a $\sim 3 \sigma$ excess?
- If we generate 10 K pseudoexperiments, we find $\sim 3 \sigma$ local anomalies in 15% of them ($\sim 1.5 \sigma$ global).
- But this doesn't account for the reality checks.
- Look-Elsewhere Effect well-defined defined in terms of a model.
- e.g. number of up-crossings in
 a resonance search.

Look-Elsewhere in a Model

- Work within the mono- ϕ model.
- For 10K pseudoexperiments, fit across the mass plane
- Reduces a $\sim 3 \sigma$ local fluctuation to $\sim 2 \sigma$
- We couldn't crosscorrelate with CMS033/ATLAS022

Outlook

- LHC data contains interesting statistical excesses now
- Can be hidden inside the many high-dimension SRs
- Most (all?) are probably statistical fluctuations, but that takes work to uncover.
- The set of benchmark models used is not a sufficient basis.
- Proof-of-concept: we have identified two <1\% anomalies in CMS jets+MET.
- Can't apply to ATLAS data, because SRs are overlapping.
- (The ATLAS thresholds seem to be higher as well)

Outlook

- The "mono-jet" anomaly:
- Well fit by a color-triplet decaying to quarks+MET
- Associated signatures (dijets,

CMS-SUS-16-036

 multijets, multijets+MET)- Systematics limited
- Identifying these anomalies now gives targets of interest for the future data analysis.
- Can freeze thresholds to maintain sensitivity.
- Can test signal hypotheses with additional kinematics.

New Physics

CMS-SUS-16-035

