Mining LHC Data

Matthew R Buckley Rutgers University

Future of collider searches for Dark Matter LPC, July 2017

arxiv:1707.05783 P. Asadi, MRB, A. DiFranzo, A. Monteux, D. Shih

New Physics?

Where is it?

New Physics?

• Where is it?

New Physics?

PARTICLE PHYSICS

What No New Particles Means for Physics

🔫 43 | 💻

Physicists are confronting their "nightmare scenario." What doe new particles suggest about how nature works?

The New York Times A Crisis at the Edge of Physics

Gray Matter

By ADAM FRANK and MARCELO GLEISER JUNE 5, 2015

In Theory: Is theoretical physics in crisis?

Slicing up Data

- ATLAS and CMS data divided up by topology (number of leptons, fat-jets, *etc.*)
- Then subdivided by kinematics into signal regions

Setting Limits

- Limits are *model-dependent*.
 - Model tells us which how to combine the statistical pull of each signal region.

Setting Limits

- A search can have many statistically significant excesses over background and still have observed limits equal expected
 - For a particular model
 - Have we looked at all models?

Rectangular Aggregations

- Signal likely to be distributed in "nearby" signal regions
 - Model kinematics, ISR/FSR, detector resolution,...
- Consider all possible "rectangular aggregations" of signal regions to look for signal over background.
- Best for non-overlapping SRs
 - CMS searches

Correlations

$$\mathcal{L}(\mu,\theta) = \prod_{i} \frac{(\mu s_i + b_i + \theta_i)_i^n e^{-(\mu s_i + b_i + \theta_i)}}{n_i!} \exp\left(-\frac{1}{2}\theta^T V^{-1}\theta\right)$$

- We're calculating $\Delta \log \mathcal{L}$, marginalizing over the background uncertainties θ_i (nuisance parameters)
 - Assuming signal populates only one RA at a time.
- CMS now publishing correlation/covariance matrices (thanks, CMS!)
- When we define a rectangular aggregation:

$$V_R = \begin{pmatrix} \sum_{i,j\in R} V_{ij} & \sum_{i\in R} V_{iJ} \\ \sum_{i\in R} V_{iJ} & V_{IJ} \end{pmatrix}$$

Jets + MET

• Concentrate on jets + MET searches as proof-of-principle

- ATLAS-PAS-17-022 has overlapping SRs
- CMS-EXO-16-048 has 1D SRs ($\not\!\!\!E_T$), this technique overkill
- Apply RA technique, assuming signal populates one rectangle and nowhere else.

Aggregating for Anomalies

- We're interested in excesses over background.
 - Keep anything with *p*-value < 1% $N_{\sigma} > 2.6$

R	IC	bins	N_j	N_b	H_T (GeV)	$H_T^{\rm miss}({\rm GeV})$	N_{σ}
	a	$13,16,\ 23,26,\ 43,46,\ 53,56,\ 63,66$	2 - 4	≥ 1	> 1000	300 - 500	3.11
1	b	$13,16,\ 23,26,\ 43,46,\ 53,56$	2 - 4	1 - 2	> 1000	300 - 500	2.77
1	c	13,16,43,46,83,86,120,122	2 - 8	1	> 1000	300 - 500	2.65
	d	21-26, 51-56, 61-66	2 - 4	≥ 2	> 300	300 - 500	2.64
	a	1, 4, 31, 34, 71, 74	2 - 6	0	$300^{*} - 500$	300 - 500	2.96
2	b	71, 74, 81, 84	5 - 6	0 - 1	$300^* - 500$	300 - 500	2.70
2	с	1, 4, 31, 34	2 - 4	0	$300^* - 500$	300 - 500	2.64
	d	31, 34, 71, 74	3 - 6	0	$300^{*} - 500$	300 - 500	2.57
3	а	125-126	7 - 8	1	> 750	> 750	2.81
ა	b	126	7 - 8	1	> 1500	> 750	2.73

CMS-SUS-16-033

CMS-SUS-16-036

ROI		bins	N_{j}	N_b	$H_T ({\rm GeV})$	$M_{T2}(\text{GeV})$	N _σ
1	a	126-130, 132-136	2 - 3	0-1	1000 - 1500	≥ 400	3.5
	b	126-127, 132-133	2 - 3	0 - 1	1000 - 1500	400 - 800	3.36
	с	126-127	2 - 3	0	1000 - 1500	400 - 800	3.09
	d	127-130, 133-136	2 - 3	0 - 1	1000 - 1500	≥ 600	2.68
	e	126, 132	2 - 3	0 - 1	1000 - 1500	400 - 600	2.57
	a	1, 2, 8, 9, 13, 16	1 - 3	0 - 1	250 - 450	200 - 300	3.3
	b	1, 2, 13	1 - 3	0	250 - 450	200 - 300	2.95
2	с	1,8,13,16	1 - 3	0 - 1	$250 - 450^{*}$	200 - 300	2.93
	d	1, 13	1 - 3	0	$250 - 450^{*}$	200 - 300	2.74
	е	1, 2, 8, 9	1	0 - 1	250 - 450	_	2.6
3	a	12, 79	1 - 3	1	$575^{\dagger} - 1000$	200 - 300	3.03
	b	79	2 - 3	1	575 - 1000	200 - 300	2.84
4	44, 45, 60, 61		2 - 6	2	450 - 575	≥ 400	2.76
5		99	4 - 6	1	575 - 1000	300 - 400	2.75

Reality Checks

- Obviously, most of these excesses aren't due to new physics.
- Can eliminate those in tension with equivalent regions in other jet+MET search (033↔036).
- Can further eliminate those that should have excesses in neighboring SRs

Surviving Anomalies

- Two in each search
 - One in each are particularly interesting

CMS-SUS-16-033

CMS-SUS-16-036

575 - 1000

 $N_{\rm b}$ | H_T (GeV) | M_{T2} (GeV) | N_{σ} | compatible?

300 - 400

2.75

								1101	01115	j	116		$M_{T2}(\text{GeV})$	Γ_{σ}	compannie:
ROI	bins	N_j	N_b	H_T (GeV)	$H_T^{\text{miss}}(\text{GeV})$	N _{\sigma}	compatible?	a	126-130, 132-136	2 - 3	0 - 1	1000 - 1500	≥ 400	3.5	
a	13,16, 23,26, 43,46, 53,56, 63,66	2 - 4	≥ 1	> 1000	300 - 500	3.11	X_N_j, N_b	b	126-127, 132-133	2 - 3	0 - 1	1000 - 1500	400 - 800	3.36	
b 1	13,16, 23,26, 43,46, 53,56	2 - 4	1-2	> 1000	300 - 500	2.77	1	1 c	126-127	2 - 3	0	1000 - 1500	400 - 800	3.09	$\mathbf{x}_{E_{T}}$
L C	$13,16,\ 43,46,\ 83,86,\ 120,122$	2 - 8	1	> 1000	300 - 500	2.65	$\mathbf{X}N_{j}$	d	127-130, 133-136	2 - 3	0 - 1	1000 - 1500	≥ 600	2.68	
d	21-26, 51-56, 61-66	2 - 4	≥ 2	> 300	300 - 500	2.64	$X N_j, N_b$	e	126, 132	2 - 3	0 - 1	1000 - 1500	400 - 600	2.57	
a	1, 4, 31, 34, 71, 74	2 - 6	0	$300^* - 500$	300 - 500	2.96	1	a	1, 2, 8, 9, 13, 16	1 3	0-1	- 250 - 450	200 - 300	3.3	$\bigstar N_b$
$^{\mathrm{b}}$	71, 74, 81, 84	5-6-	0-1	300* 500	300 - 500	2.70	1	b	1, 2, 13	1-3	0	250 - 450	200 - 300	2.95	
² c	1, 4, 31, 34	2 - 4	0	$300^* - 500$	300 - 500	2.64		2 с	1,8,13,16	1-9	v - 1	200 - 400	200 - 300	2.93	$lpha N_b$
d	31, 34, 71, 74	0-0	-0	$300^{*} - 500^{-}$	300 - 500	2.57	1	d	1, 13	1-3	0	$250 - 450^*$	200 - 300	2.74	\checkmark
а 3	125-126	7 - 8	1	> 750	> 750	2.81	$\mathbf{X}N_{i}$	e	1, 2, 8, 9	1	0 - 1	250 - 450	_	2.6	$lpha N_b$
b	126	7 - 8	1	> 1500	> 750	2.73		a 3	12, 79	1-3	1	$575^{\dagger} - 1000$	200 - 300	3.03	5
								b	79	2 - 3	1	575 - 1000	200 - 300	2.84	· ·
								4	44, 45, 60, 61	2 - 6	2	450 - 575	≥ 400	2.76	$\mathbf{X}H_T$

ROI

5

bins

99

4 - 6

1

 XM_{T2}

"Mono-Jet" Excess

aggregation (significance)	N_j	N_b	$H_T(\mathrm{GeV})$	$M_{T2}, \not\!\!\!E_T(\mathrm{GeV})$
CMS036 #2b (2.95 σ)	1-3	0	250 - 450	200 - 300
CMS033 #2c (2.64σ)	2 - 4	0	300 - 500	300 - 500

"Mono-Jet" Excess

- What models fit this excess?
- Go back to the full analysis, using all data in all SRs
 - MSSM is not a good fit (as expected)
- We considered three models in depth:

etc...

Analysis code available on arxiv for those interested

Successful Models

 Vector-mediated dark matter & squark/neutralino spill out into too many other SRs

Successful Models

• The mono- ϕ model appears to work well.

- Color triplet, decaying to quark + MET
 - "RPV-MSSM"-ish, but problems with Majorana masses
- This model is preferred at $\sim 3\sigma$ in CMS-036.
 - Tension with CMS-048
- ATLAS-2017-022 has $\sim 1.5\sigma$ preference. $\sim 3.5\sigma$ combined

Look-Elsewhere

- Having looked in 33,000 rectangles, are we guaranteed to find a $\sim 3\sigma$ excess?
- If we generate 10K pseudoexperiments, we find $\sim 3\sigma$ local anomalies in 15% of them ($\sim 1.5\sigma$ global).
 - But this doesn't account for the reality checks.
- Look-Elsewhere Effect well-defined defined in terms of a model.
 - *e.g.* number of up-crossings in a resonance search.

Look-Elsewhere in a Model

- Work within the mono- ϕ model.
- For 10K pseudoexperiments, fit across the mass plane
- Reduces a $\sim 3\sigma$ local fluctuation to $\sim 2\sigma$
- We couldn't crosscorrelate with CMS033/ATLAS022

LEE for CMS036 (mono- ϕ model, ud initial state)

Outlook

- LHC data contains interesting statistical excesses now
 - Can be hidden inside the many high-dimension SRs
- Most (all?) are probably statistical fluctuations, but that takes work to uncover.
- The set of benchmark models used is not a sufficient basis.
- Proof-of-concept: we have identified two <1% anomalies in CMS jets+MET.
 - Can't apply to ATLAS data, because SRs are overlapping.
 - (The ATLAS thresholds seem to be higher as well)

Outlook

- The "mono-jet" anomaly:
 - Well fit by a color-triplet decaying to quarks+MET
 - Associated signatures (dijets, multijets, multijets+MET)
 - Systematics limited
- Identifying these anomalies now gives targets of interest for the future data analysis.
 - Can freeze thresholds to maintain sensitivity.
- Can test signal hypotheses with additional kinematics.

CMS-SUS-16-036

			Data		
N_{j}, N_{b}	$M_{\rm T2}$ [GeV]	I _{T2} [GeV] Total background			
	200 - 300	7440^{+128}_{-125} (stat) ± 363 (syst)	7487		
2 - 3j, 0b	300 - 400	$4060 + \frac{76}{-75}$ (stat) ± 218 (syst)	4061		
2 0j, 00	400 - 500	$1571 + 36 \\ -35$ (stat) ± 123 (syst)	1763		
	> 500	202 + 5 = -4(stat) ±69(syst)	201		
			i		

New Physics

