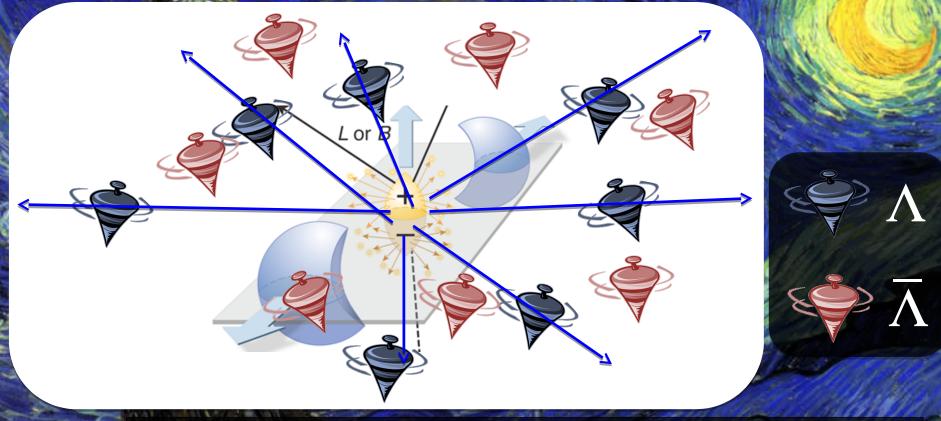


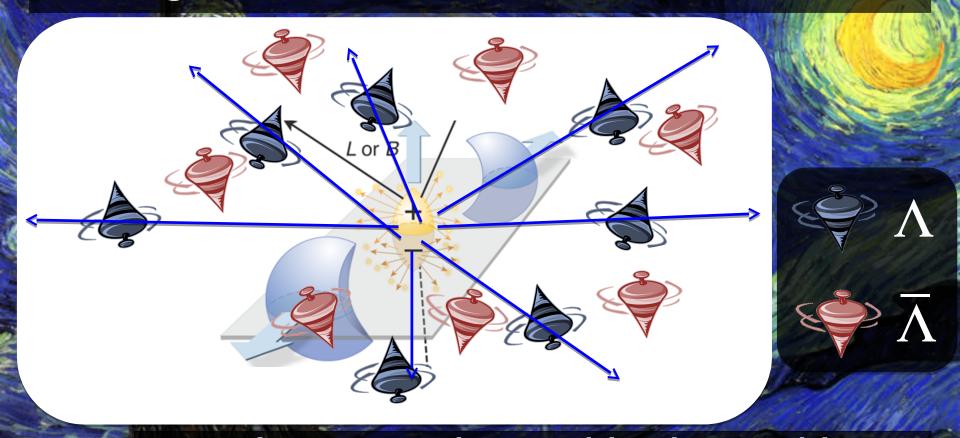
- $|L| \sim 10^3 \, h$ in non-central collisions
- How much is transferred to particles at mid-rapidity?
- Does angular momentum get distributed thermally?
- Does it generate a "spinning QGP?"
 - consequences?
- How does that affect fluid/transport?
 - Vorticity: $\vec{\omega} = \frac{1}{2} \vec{\nabla} \times \vec{v}$
- How would it manifest itself in data?

Vorticity → Global Polarization



Vortical or QCD spin-orbit: Lambda and Anti-Lambda spins aligned with L

Magnetic field → Global Polarization



Both may contribute Vortical or QCD spin-orbit: aligned with L

Lambda and Anti-Lambda spins

 (electro)magnetic coupling: Lambdas aligned Lambdas anti-aligned, and Anti-

Barnett effect

- Nice correspondence in Barnett effect
- $\underline{\mathbf{BE}}$: uncharged object rotating with angular velocity ω magnetizes

$$M = \chi \omega / \gamma$$

• γ = gyromagnetic ratio,

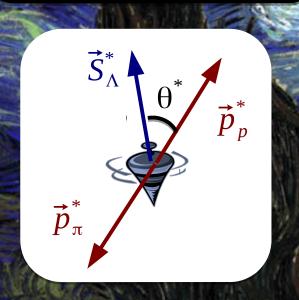
 χ = magnetic susceptibility

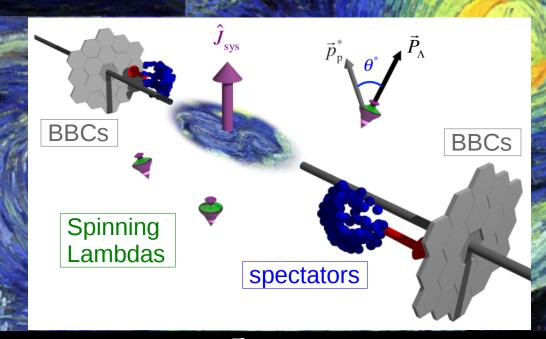
Spins align with vorticity → B field

Barnett Science 42, 163, 459 (1915); Barnett Phys. Rev. 6, 239-270 (1915)

How to quantify the effect (I)

- Lambdas are "selfanalyzing"
 - Reveal polarization by preferentially emitting daughter proton in spin direction





As with Polarization \vec{P} follow the distribution:

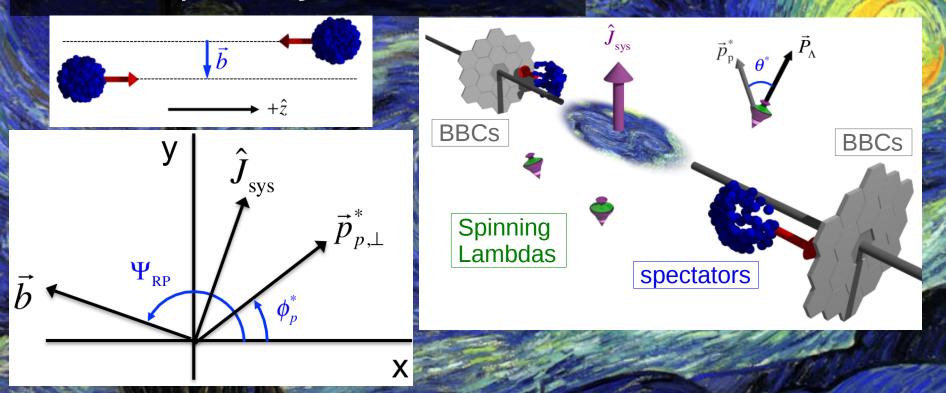
$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha \vec{P} \cdot \hat{p}_p^* \right) = \frac{1}{4\pi} \left(1 + \alpha P \cos \theta^* \right)$$

 $\alpha = 0.642 \pm 0.013$ [measured]

 \hat{p}_{p}^{*} is the daughter proton momentum direction *in the* Λ *frame* (note that this is opposite for $\overline{\Lambda}$)

$$0 < |\vec{P}| < 1$$
: $\vec{P} = \frac{3}{\alpha} \overline{\hat{p}_p^*}$

How to quantify the effect (II)



Symmetry: $|\eta| < 1$, $0 < \varphi < 2\pi \rightarrow ||\hat{L}|$

Statistics-limited experiment: we report acceptance-integrated polarization, $P_{\text{ave}} \equiv \int d\vec{\beta}_{\Lambda} \frac{dN}{d\vec{\beta}_{\Lambda}} \vec{P}(\vec{\beta}_{\Lambda}) \cdot \hat{L}$

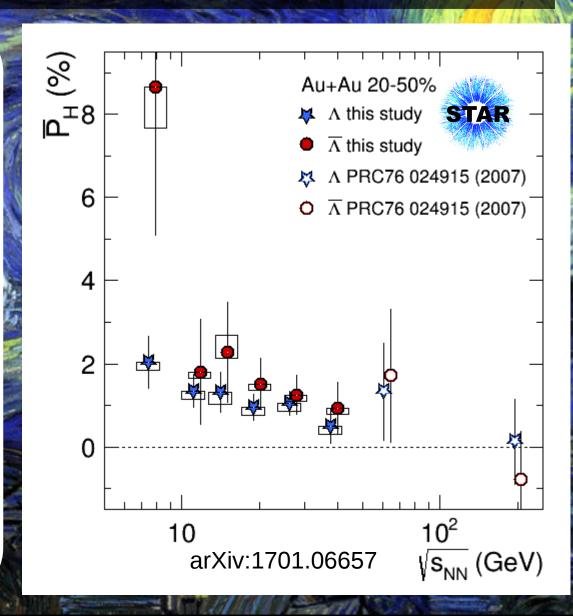
$$P_{AVE} = \frac{8}{\pi \alpha} \frac{\langle \sin(\varphi_{\hat{b}} - \varphi_p^*) \rangle}{R_{EP}^{(1)}}$$
** where the average is performed over events and Λ s

 $R_{EP}^{(1)}$ is the first-order event plane resolution and $\phi_{\hat{b}}$ is the impact parameter angle

** if $v_1 \cdot y > 0$ in BBCs $\varphi_{\hat{b}} = \Psi_{EP}$, if $v_1 \cdot y < 0$ in BBCs $\varphi_{\hat{b}} = \Psi_{EP} + \pi$

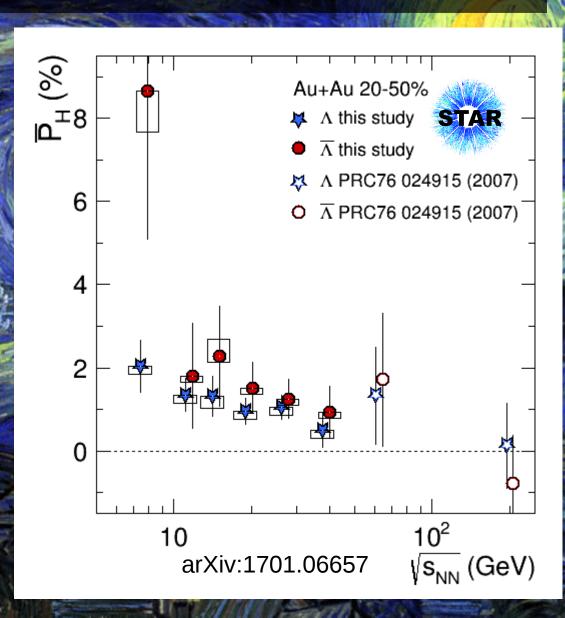
Global polarization measure

- Measured Lambda and Anti-Lambda polarization
- Includes results from previous STAR null result (2007)
- $\overline{P}_H(\Lambda)$ and $\overline{P}_H(\overline{\Lambda}) > 0$ implies positive vorticity
- $\overline{P}_H(\overline{\Lambda}) > \overline{P}_H(\Lambda)$ would imply magnetic coupling

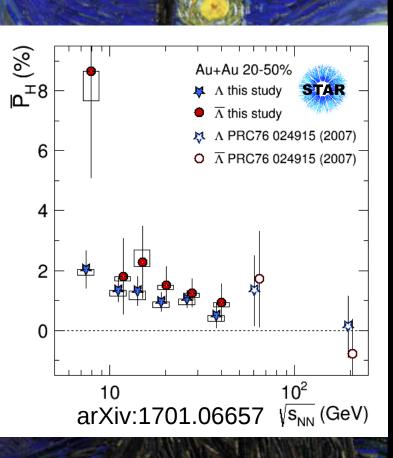


Global polarization measure

- Measured Lambda and Anti-We can study more fundamental properties
 of the system
 - previous STAR null result (2007)
- $\overline{P}_H(\Lambda)$ and $\overline{P}_H(\overline{\Lambda}) > 0$ implies positive vorticity
- $\overline{P}_H(\overline{\Lambda}) > \overline{P}_H(\Lambda)$ would imply magnetic coupling



Vortical and Magnetic Contributions



Magneto-hydro equilibrium interpretation

$$P \sim \exp\left(-E/T + \mu_B B/T + \vec{\omega} \cdot \vec{S}/T + \vec{\mu} \cdot \vec{B}/T\right)$$

• for small polarization:

$$P_{\Lambda} \approx \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T}$$
 $P_{\overline{\Lambda}} \approx \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T}$

• vorticity from addition:

$$\frac{\omega}{T} = P_{\overline{\Lambda}} + P_{\Lambda}$$

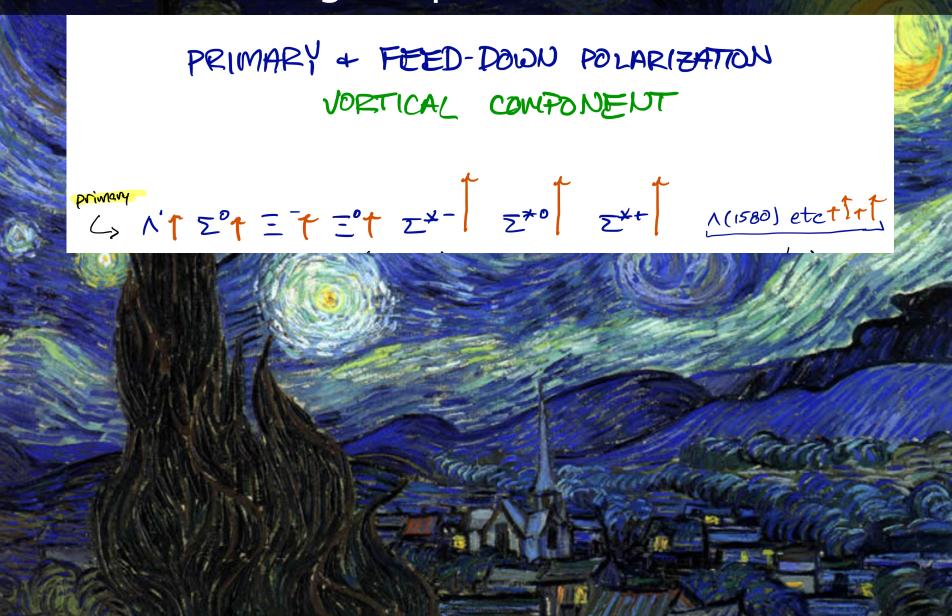
• B from the difference:

$$\frac{B}{T} = \frac{1}{2 \, \mathrm{u}_{\Lambda}} (P_{\overline{\Lambda}} - P_{\Lambda})$$

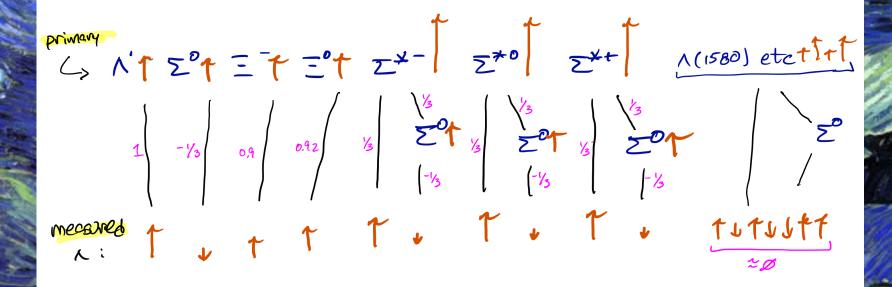
** $\hbar = k_B = 1$

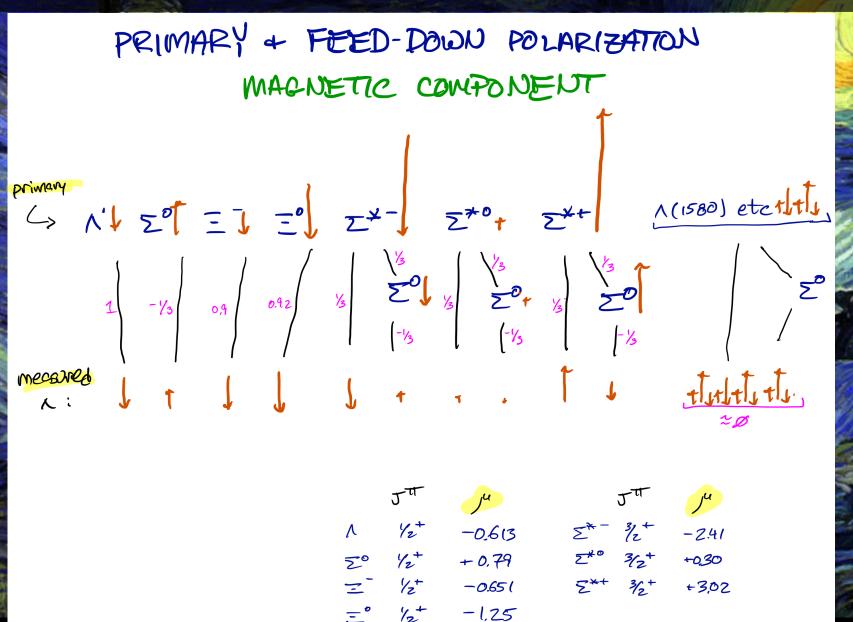
But even with topological cuts, significant feeddown from Σ^0 , $\Xi^{0/-}$, $\Sigma^{*\pm/0}$...

... which themselves will be polarized...



PRIMARY & FEED-DOWN POLARIZATION
VORTICAL COMPONENT



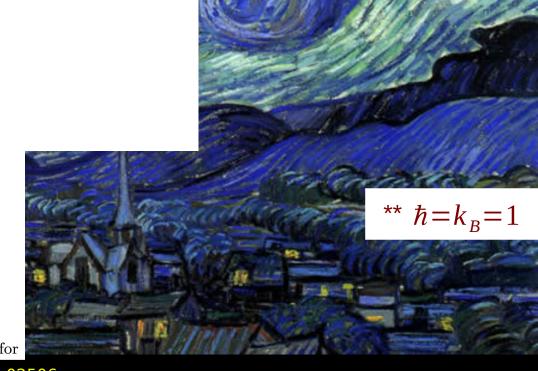


$$\left(\begin{array}{c} \frac{\omega}{T} \\ \frac{B}{T} \end{array} \right) = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \end{bmatrix}^{-1} \left(\begin{array}{c} \star \star \star \star \\ P_{\Lambda}^{\text{meas}} \right) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda} \overline{R}} C_{\overline{\Lambda} \overline{R}} - \frac{1}{3} f_{\overline{\Sigma^{0}} \overline{R}} C_{\overline{\Sigma^{0}} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) & \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda} \overline{R}} C_{\overline{\Lambda} \overline{R}} - \frac{1}{3} f_{\overline{\Sigma^{0}} \overline{R}} C_{\overline{\Sigma^{0}} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \left(\begin{array}{c} \star \star \star \star \\ P_{\Lambda}^{\text{meas}} \end{array} \right)$$

- $f_{\Lambda R}$ = fraction of Λ s that originate from parent R → Λ
- $-C_{\Lambda R}$ = coefficient of spin transfer from parent R to daughter Λ
- $-S_R$ = parent particle spin
- $-\mu_R$ is the magnetic moment of particle R
- overlines denote antiparticles

Decay	C
parity-conserving: $1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
parity-conserving: $1/2^- \rightarrow 1/2^+ 0^-$	1
parity-conserving: $3/2^+ \rightarrow 1/2^+ 0^-$	1/3
parity-conserving: $3/2^- \rightarrow 1/2^+ 0^-$	-1/5
$\Xi^0 o \Lambda + \pi^0$	+0.900
$\Xi^- o \Lambda + \pi^-$	+0.927
$\Sigma^0 \to \Lambda + \gamma$	-1/3

TABLE I. Polarization transfer factors C (see eq. (31)) for



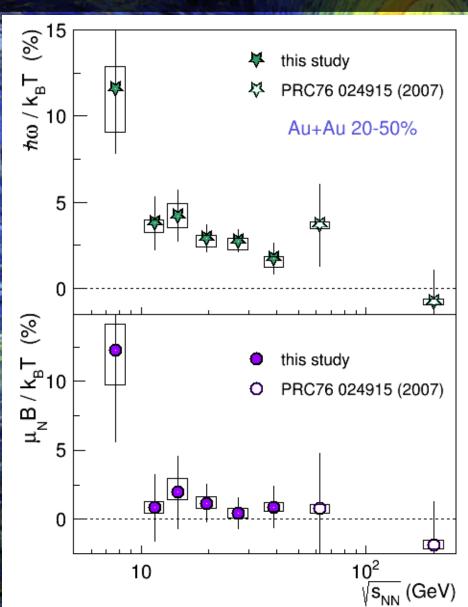
From THERMUS

Extracted Physical Parameters

- Significant vorticity signal
 - Hints at falling with energy, despite increasing $J_{collision}$
 - − 6σ average for 7.7-39GeV

$$-P_{\Lambda_{\text{primary}}} = \frac{\omega}{2T} \sim 5\%$$

- Magnetic field
 - $-\mu_N$ = nuclear magneton
 - positive value, 2σ average for 7.7-39GeV



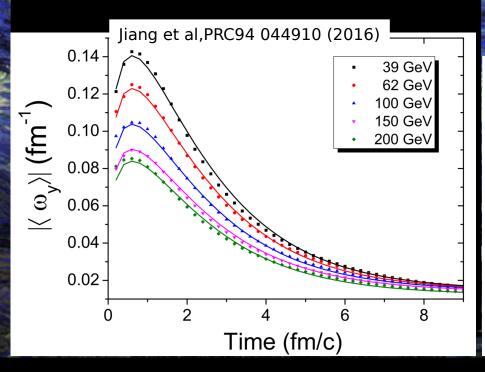
Vorticity ~ theory expectation

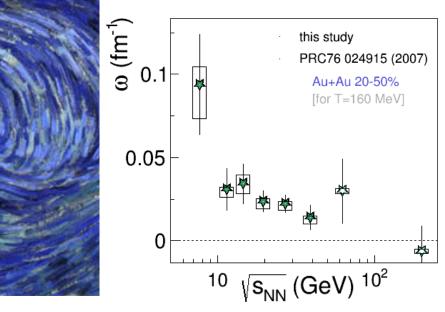
• Thermal vorticity:

$$\frac{\omega}{T} \approx 2 - 10\%$$

$$\omega \approx 0.02 - 0.09 \, fm^{-1} \quad (T_{assumed} = 160 \, MeV)$$

 Magnitude, √s-dep. in range of transport & 3D viscous hydro calculations with rotation





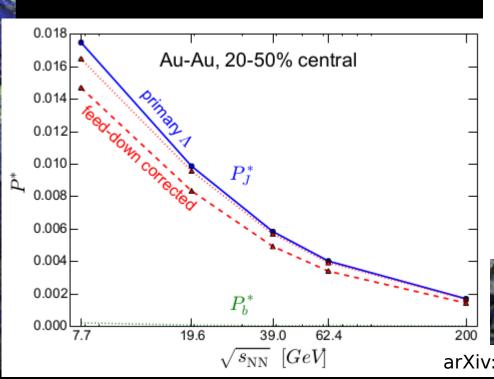
Csernai et al, PRC**90** 021904(R) (2014)

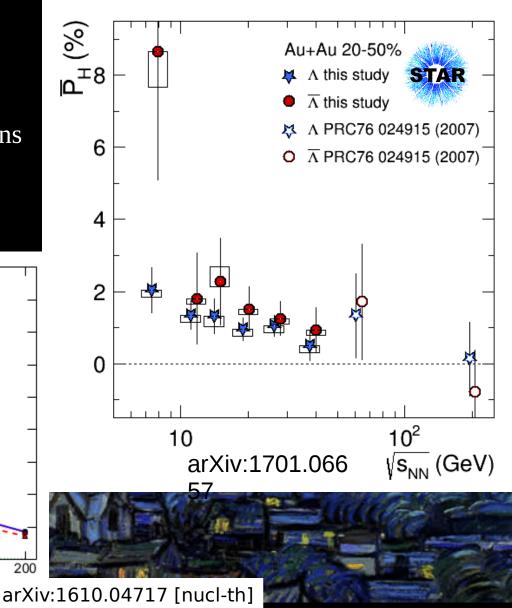
TABLE I. Time dependence of average vorticity projected to the reaction plane for heavy-ion reactions at the NICA energy of $\sqrt{s_{NN}} = 4.65 + 4.65$ GeV.

t (fm/c)	Vorticity (classical) (c/fm)	Thermal vorticity (relativistic) (1)
0.17	0.1345	0.0847
1.02	0.1238	0.0975
1.86	0.1079	0.0846
2.71	0.0924	0.0886
3.56	0.0773	0.0739

BES ~ theory expectation

- 3+1D viscous hydrodynamics
 - Not very sensitive to shear viscosity
 - Very sensitive to initial conditions
- Expectation: falling with \sqrt{s}





B-Field ~ theory expectation

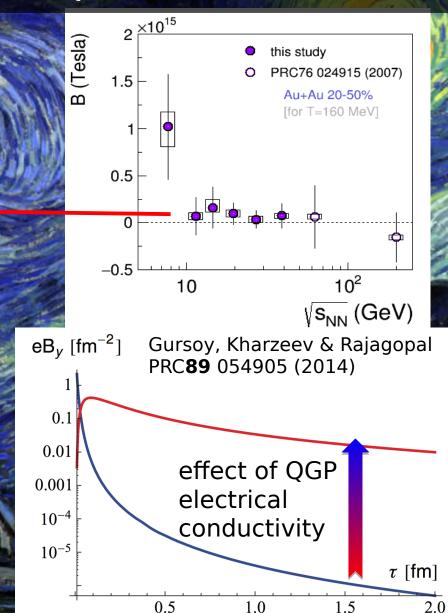
Magnetic field:

Expected sign

$$B \sim 10^{14} \text{ Tesla}$$

 $eB \sim 1 m_{\pi}^2 \sim 0.5 \text{ fm}^{-2}$

- Magnitude at high end of theory expectation (expectations vary by orders of magnitude)
- But... consistent with zero
 - A definitive statement requires more statistics/better EP determination



Summary I

- Non-central heavy ion collisions create QGP with high vorticity
 - —generated by early shear viscosity (closely related to initial conditions), persists through low viscosity
 - —fundamental feature of *any* fluid, unmeasured until now
 - an incomplete characterization of QGP
 - relevance for other hydro-based conclusions?
- Huge and rapidly-changing **B-field** in non-central collisions
 - —not directly measured
 - —theoretical predictions vary by orders of magnitude
 - —sensitive to electrical conductivity, early dynamics
- Both of these extreme conditions must be established & understood to put recent claims of chiral effects on firm ground

Summary II

- Global hyperon polarization: unique probe of vorticity & B-field
 - -non-exotic, non-chiral
 - —quantitative input to calibrate chiral phenomena
- STAR has made the first observation of global Λ polarization
 - -statistics- & resolution-limited: 1-5 σ effect for any given $\sqrt{s_{NN}}$
 - ~6σ effect on average
- Interpretation in magnetic-vortical model:
 - -clear vortical component of right sign, magnitude for $\sqrt{s_{NN}}$ < 30 GeV
 - -magnetic component of right sign, magnitude *hinted at*, but consistent with zero at each $\sqrt{s_{NN}}$
- BES-II: Statistics & upgrades will allow characterization & model discrimination

