### CLIC-DBRC update - TTA and 12x recombination

Raul Costa

CERN

April 20, 2017

### **CLIC Beam Physics Meetings**



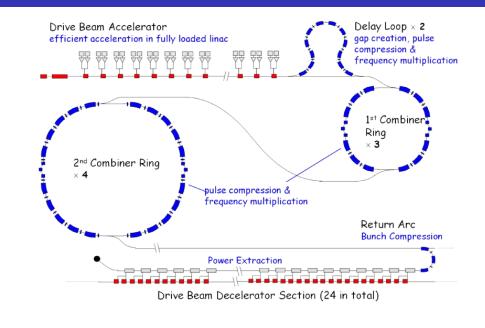
Raul Costa, Andrea Latina, Eduardo Marin

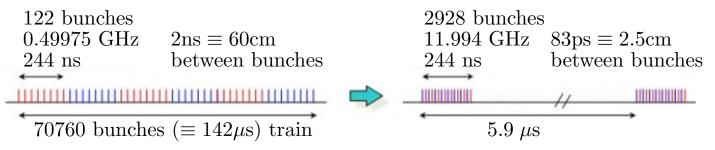
Raul Costa (CERN)

TTA and 12x recombination



## Outline

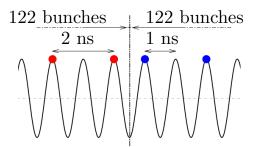

### **1** DBRC's role and design parameters


- 2 Design proposal CR2 injection scheme
- 3 Emittance optimization
- 4 Bunch decompression and recompression
- 5 12x recombination
- 6 Results
- 7 Conclusions



## DBRC's role

The DBRC is located after the drive beam linac. It's main role is to create high current pulses for the PETS.






# DBRC's design parameters

### Injection:

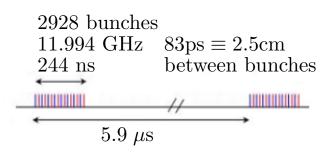
- E = 2.38 GeV
- $\Delta E = 0.85\%$
- $\varepsilon_{x,y} = 100 \mu \mathrm{m}$
- $\sigma_z = 1 \text{mm}^1$
- Longitudinal chirp
- f = 0.49975 GHz
- 122 bunch trains phase-coded




 $^{1}2$ mm inside the complex

Raul Costa (CERN)

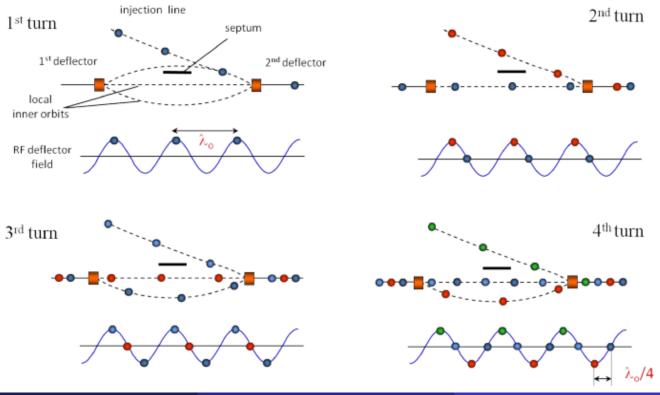
# DBRC's design parameters


### Injection:

- E = 2.38 GeV
- $\Delta E = 0.85\%$
- $\varepsilon_{x,y} = 100 \mu \mathrm{m}$
- $\sigma_z = 1 \text{mm}^1$
- Longitudinal chirp
- f = 0.49975 GHz
- 122 bunch trains phase-coded



### Extraction:

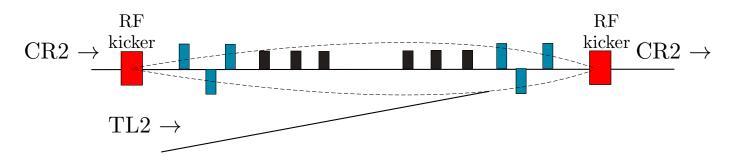

- E = 2.38 GeV
- $\Delta E = 0.85\%$
- $\varepsilon_{x,y} = 150 \mu \mathrm{m}$
- $\sigma_z = 1 \mathrm{mm}$
- Longitudinal chirp
- f = 11.994 GHz
- short pulse time structure



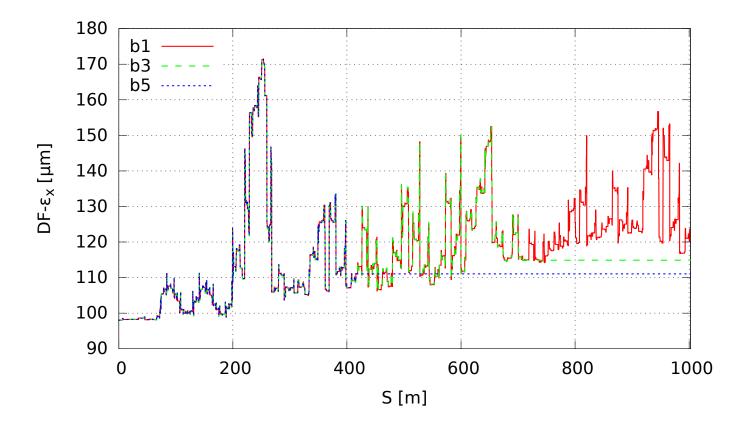
<sup>1</sup>2mm inside the complex Raul Costa (CERN)

## CR2 injection scheme

- CR2 uses two 3 GHz RF kickers to inject the bunches into orbit
- This means that the third turn of the ring suffers a "bump" in the opposite direction of the septum.

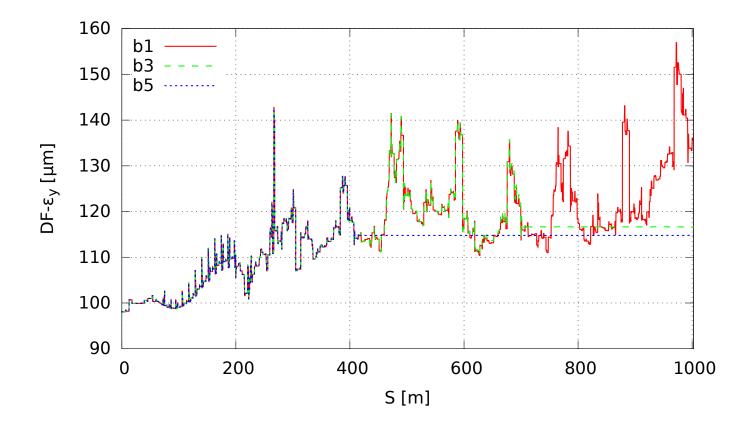


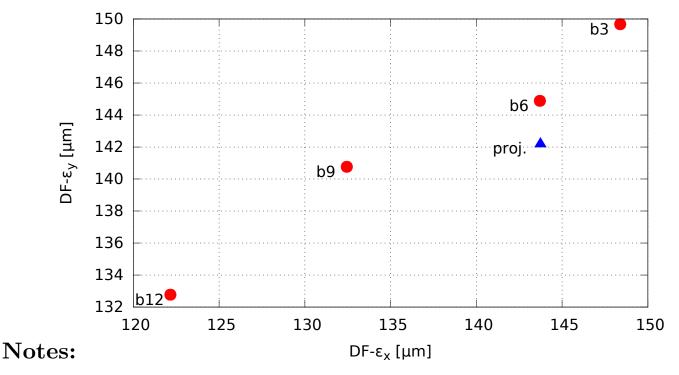

Raul Costa (CERN)


TTA and 12x recombination

April 20, 2017 5 / 17

- Since turn 3 has an offset, the sextupoles act as quadrupoles (and sextupoles, and dipoles)
- The septum was moved to inject after the sextupoles

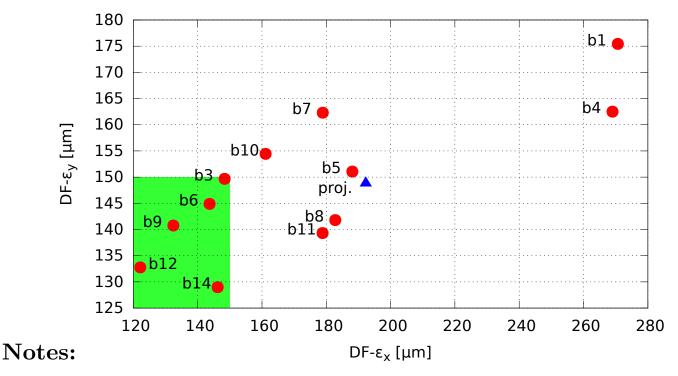




### Emittance optimization - up to CR1



7 / 17

### Emittance optimization - up to CR1



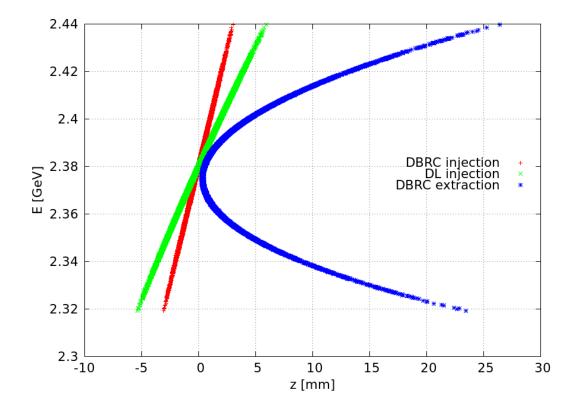



• CR2 was optimized with the bunch that takes 1.5 turns in CR1

• This results are with the new CR2 injection bump design

Raul Costa (CERN)

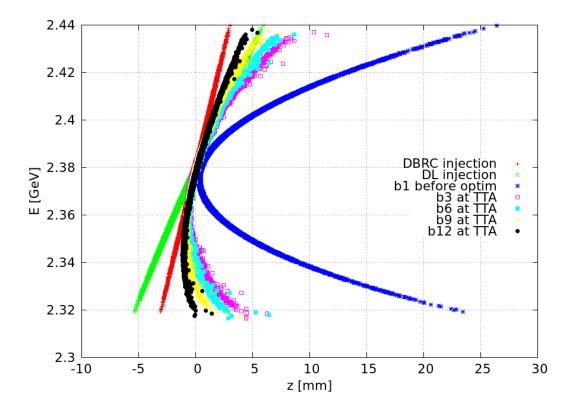



- CR2 was optimized with the bunch that takes 1.5 turns in CR1
- This results are with the new CR2 injection bump design

Raul Costa (CERN)

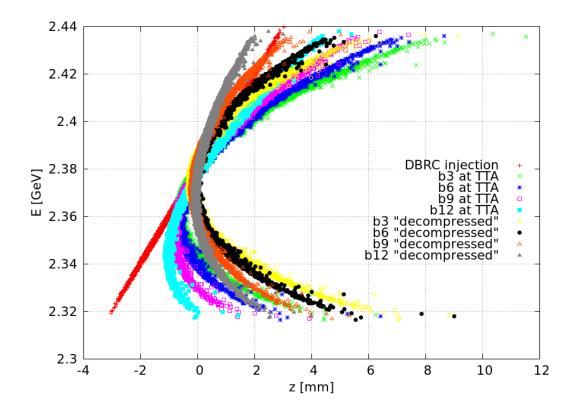
10 / 17

# The $T_{566}$ problem


• Shortly after the lattice was implemented in Placet2 an unexpected  $T_{566}$  aberration was identified



11 / 17


## After optimization

- In addition to emittance we also targeted  $T_{566}$
- Using sextupoles in dispersive regions we managed to reduce it



## Attempting to recompress

But now that we are at the recompression chicane, it is clear that it is not sufficient. The chicane actually over-compresses due to the  $T_{566}$ 



13 / 17

In order to low emittance achieve 12x recombination we "only" need to match all CR1 bunches to the properties of bunch 3



In order to low emittance achieve 12x recombination we "only" need to match all CR1 bunches to the properties of bunch 3

#### Current issues:

- Tracking the 12 bunch paths requires  $\sim 1 \text{min/iteration}$
- Symplex optimizing takes O(4-5) iterations



In order to low emittance achieve 12x recombination we "only" need to match all CR1 bunches to the properties of bunch 3

#### Current issues:

- Tracking the 12 bunch paths requires  $\sim 1 \text{min/iteration}$
- Symplex optimizing takes O(4-5) iterations
- We could easily be looking at months of computing time
- Additionally there seems to be a problem Placet2's parallelization

#### Projected DF-emittance growth:

|             | 0                               |                             |                                 |                             |  |  |
|-------------|---------------------------------|-----------------------------|---------------------------------|-----------------------------|--|--|
| sector      | $\varepsilon_x[\mu \mathrm{m}]$ | $\Delta \varepsilon_x [\%]$ | $\varepsilon_y[\mu \mathrm{m}]$ | $\Delta \varepsilon_y [\%]$ |  |  |
| DL          | 117                             | 17                          | 107                             | 7                           |  |  |
| CR1 (3x)    | 139                             | 19                          | 122                             | 14                          |  |  |
| TTA $(4x)$  | 143                             | 3                           | 142                             | 16                          |  |  |
| TTA $(12x)$ | 192                             | 38                          | 149                             | 22                          |  |  |

#### Bunch length after recompression:

| bunch                       | b3   | b6   | b9   | b12  |
|-----------------------------|------|------|------|------|
| $\sigma_z \; [\mathrm{mm}]$ | 0.97 | 0.76 | 0.56 | 0.36 |



### Conclusions

- DBRC Placet2 lattices are ready for simulations and studies
- Several features (BPMs, dispersion-free readings, etc) have been added or updated in Placet2
- Lattice geometry updated (DL, CR1, TL2 and CR2)

### Conclusions

- DBRC Placet2 lattices are ready for simulations and studies
- Several features (BPMs, dispersion-free readings, etc) have been added or updated in Placet2
- Lattice geometry updated (DL, CR1, TL2 and CR2)
- There is a strong  $T_{566}$  aberration
- Sextupoles in dispersive regions can reduce  $T_{566}$
- Current  $T_{566}$  correction is insufficient for recompression
- We probably need a dedicated study (and optics?) to correct this

### Conclusions

- DBRC Placet2 lattices are ready for simulations and studies
- Several features (BPMs, dispersion-free readings, etc) have been added or updated in Placet2
- Lattice geometry updated (DL, CR1, TL2 and CR2)
- There is a strong  $T_{566}$  aberration
- Sextupoles in dispersive regions can reduce  $T_{566}$
- Current  $T_{566}$  correction is insufficient for recompression
- We probably need a dedicated study (and optics?) to correct this
- We have proposed a new CR2 injection design
- Preliminary results at CR2 meet design budget:  $\varepsilon_x = 143 \mu m \ \varepsilon_y = 142 \mu m$  projected over 4 bunch recombination
- 12 bunch recombination requires further optimization of CR1

- Improvement of code (parallelization) and computing resources
- $\bullet\,$  Re-optimization of CR1 to better match bunches 1,3 and 5
- Global machine optimization



- Improvement of code (parallelization) and computing resources
- $\bullet\,$  Re-optimization of CR1 to better match bunches 1,3 and 5
- Global machine optimization
- Revisit the DL design (implement short path and update long)
- Design and implement more realistic septa



- Improvement of code (parallelization) and computing resources
- $\bullet\,$  Re-optimization of CR1 to better match bunches 1,3 and 5
- Global machine optimization
- Revisit the DL design (implement short path and update long)
- Design and implement more realistic septa
- Check magnet strength and longitudinal phase error tolerances
- Implement misalignments and beam-based alignment



- Improvement of code (parallelization) and computing resources
- $\bullet\,$  Re-optimization of CR1 to better match bunches 1,3 and 5
- Global machine optimization
- Revisit the DL design (implement short path and update long)
- Design and implement more realistic septa
- Check magnet strength and longitudinal phase error tolerances
- Implement misalignments and beam-based alignment
- Write a thesis!!

