
Bertini memory
optimization

Andrea Dotti (adotti@slac.stanford.edu) ; SD/EPP/Computing,
Mike Kelsey

And bug fixing.

http://www.geant4.org

mailto:adotti@slac.stanford.edu
http://www.geant4.org/

2

Outlook

Memory issue with 10.3

Analysis of issue

Recent fix

3

Memory profile in 10.3

Seen a substantial memory
increase in 10.3:

– As a function of event
number

– In our usual ParFullCMS
tests

– Linear with number of
threads (not shown here)

Time (a.u.) - Event number (a.u.)

4

Memory profile in 10.3

Seen a substantial memory
increase in 10.3:

– As a function of event
number

– In our usual
ParFullCMS tests

– Linear with number of
threads

– Linear with high-end of
Bertini transition

FTFP>20GeV
BERT<20.1GeV

5

Memory profile in 10.3

Seen a substantial memory
increase in 10.3:

– As a function of event
number

– In our usual
ParFullCMS tests

– Linear with number of
threads

– Linear with high-end of
Bertini transition

FTFP_BERT 10.2

FTFP_BERT 10.3

6

Memory profile in 10.3

After investigations
realized the problem is
in coalescence code in
Bertini.

As extreme case: turn-off
completely coalescence

7

Coalescence

After nuclear cascade: escaping
nucleons are checked for
possibility of forming a light
fragment (d,t,He3 or alpha).
The combinatorics of all exiting
nucleons is considered:

d

pi

n

dpi

nucleons Combinations

5 25

20 6175

50 251125

8

Coalescence

To avoid double counting a std::set was used to keep
tracked of tried combinations

– an hash of the combination was used (using nucleon index) as input
to the set

– only for very large multiplicities the size of the std::set can be
actually observed

– in MT mode each thread has its own std::set, thus requiring
memory proportional to the #threads

9

Bug in hashing function
During the debugging of the memory issue we also realized the
hash function was bugged presenting high level of collisions

Hash
4
(1,4,6,7) = 001004006007 = 1004006007

Hash
4
(0,4,3,2) = 000004003002 = 4003002

Hash
3
(4,3,2) = 004003002 = 4003002

t/He3 candidate {4,3,2}
is never considered

10

Fix and result

Use of std::set has
been completely
removed. Algorithm
now is constant in
memory and there is no
need for the (bugged)
cache

11

Fix and result

Expect minimal increase in
number of light fragments
produced and as consequence
reduced multiplicity

Please note the very large
multiplicities interactions:
tens of nucleons to be
considered was not so rare...

12

Why we did not see it with regular performance tests?

Memory is measured at the end of (selected) events in an event-action

At the beginning of each new interaction the std::set was cleared
– In sequential mode, there is only one std::set, we need to be (un-)lucky to have the

last Bertini interaction to be a large multiplicity one to realize we have a problem
– In MT we measure memory from one thread, other threads can be in the middle of the

simulation of a Bertini cascade, and thus we can have a “snapshot” of live memory

The sequential memory measurement is blind to abnormal use of memory in
single event (we could measure memory in tracking action or some other trick
like that), or simply use more MT

13

Conclusions
The memory increase seen in 10.3 was due to the coalescence code in Bertini

It was present also in older versions, but it appears only if:
– Bertini used at higher energies
– Multi-threading jobs
– High-statistics

Memory increase has been solved, together with a physics bug (artificial suppression
of light fragments): with this fix memory is even better than 10.2

A high statistics memory test with large number of threads is needed to complete
the tests performed by Soon: I will start to routinely perform this test on reference
tags to be done on Xeon Phi with 100 threads

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

