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• Safety concerns 

– Magnetic energy stored in coils: ~40GJ (TFC) and ~10GJ (CS/PFC)

– Localisation of stored energy in fault coil.

– Consequences of damage to magnets or adjacent components

• Integrated ANSYS model provides qualified analyses
– Python and APDL scripts

• Build geometry

• Implement quench and construct arc element network

• Post-process results

– Quench in superconductor

– Time evolution of electrical circuit

– Non-linear arc models and melt short-circuits

– Thermal damage assessment

Topic Introduction
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Model Introduction

• Methodology

• Geometry and finite element mesh

• Quench

• Thermal Model

• Electrical Model

– External driving circuit

– Electrical connections

– Electrical arcs (inline and turn-turn / pancake)

• Material Properties

• Reference Simulations

• Conclusions

• Meetings

- Benchmark with MagArc code

- Integrated model Results for qualified analysis of ITER unmitigated quench
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Methodology
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• Thermal and Electrical physics environments created

• Physics environments coupled at each load-step

• Model launched from workbench but written in APDL

Thermal load-step

• Quench propagation

• Joule heating

• Arc heating

• Phase change

• 3D conduction

• Multi-quench initiation

Coil temperature 

Quench status of conductor

Electric load-step

• External circuit

• Ohmic dissipation

• Electrical breakdown

• Circuit evolution

Joule and Arc heating
Non-linear

convergence
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Geometry
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Geometry
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D-shape TF coil

TF coil cross-section

Fault coils resolved using 3D Finite Elements

• models typically comprise ~1.5M elements

• same mesh used for electrical and thermal models

• TF and PF geometries both modelled as circular

PF coil cross-section
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Quench 

MIT 1D model

• 1D model sets quench propagation speed

• speed a function of initiating length and duration

• additional quench sites triggered by 3 mechanisms:

3D heat conduction, electrical arcing and pancake heating
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Thermal model

• Power deposited from electrical model

• Conductor Ohmic heating and electrical arcs

• Enthalpy steps capture latent heats of melt /vaporisation

• 3D thermal conduction model diffuses heat through coil (triggering additional quench)

• Radiation boundary on coil case exterior transports heat away from magnet
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Lumped inductance matrix (18x18)

Single coil’s circuit
(circu124 elements)

Electrical - external driving circuit
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Coils (inductor + voltage source)

Fast Discharge Unit

Ground Resistors

• 18 TF coils arranged in pairs

• Coils connected in series

• Coils pairs separated by 9 FDUs

• Multiple paths to ground

Fault coil 'stranded'

FDUs on

Fault coil 'inline'

FDUs off

Driving circuit 

connected to 

'brick' FE model

Electrical - external driving circuit
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FDU off

CSL3

CSL2

CSL1

CSU1

CSU2

CSU3 PF1

PF2

PF3

PF4

PF5

PF6

FDU off

FDU off

FDU off

Electrical - external driving circuit
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LT-SPICE: simplified TFC circuit

ANSYS driving electrical circuit 

validated with LT-SPICE

• Zero resistance fault coil

• Fault coil 'stranded'

• Energy transferred to fault coil

• Good agreement between models

PF validation

TF validation

Electrical - external driving circuit
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Electrical - distributed inductance

• Electrical shorts / arcs modify current path 

• New current path alters the fault coil’s inductance

Fault coil inductance distributed 'per-turn’



Simon McIntosh

CERN Seminar 25th April

14

Distributed inductance matrix (151x151)

134 turn fault coil
calculated DDD

Coil 1-1 0.345 0.349

Coil 1-2 0.132 0.133

Coil 1-3 0.066 0.066

Coil 1-4 0.038 0.038

Coil 1-5 0.023 0.023

Coil 1-6 0.016 0.016

Coil 1-7 0.011 0.011

Coil 1-8 0.009 0.009

Coil 1-9 0.007 0.007

Coil 1-10 0.007 0.007

Check 18 loop calculation against DDD

Total inductance 17.2H (DDD 17.7H)

Calculate inductance using 

Neumann integral
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Effect of TF driving circuit type (stranded vs inline) on coil current

Key:

Mean current: colour

Terminal current: grey

• Discharge of un-faulted coils couples energy into stranded circuit

• Further increase in turn currents due to distributed inductance

Electrical - TF driving circuit
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Electrical - TF driving circuit
Influence of driving circuit type (inline vs stranded) on total energy deposited

• Much greater stored energy in inline circuit (41GJ vs 8GJ)

• However, similar total power deposition (short-circuits exclude inline coil)

• ~ 4 times higher peak power for stranded coil (higher terminal currents)
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Electrical - distributed inductance

Current development for stranded TF simulation showing currents in all turns

Distributed inductance ensures conservation of energy

Discharge of single turns (arcs, short-circuits) couple energy back into circuit

High peak currents attained
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Time evolving electrical network implemented with a network of resistors linking elements

Resistance adjusted during simulation to capture effects of arcing and electrical shorts

Electrical - arcs and short-circuits

Arcs form along field lines

Melt short-circuit normal to B and I 

Panel of potential electrical connections repeated around coil (3300 connections for TF) 
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Electrical - inline arcs

Experiments performed at KIT
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Electrical - inline arcs

• large bursting forces stabilise molten conductor sections

• In-line gaps/arcs self-extinguish in high magnetic fields

• molten sections modelled as continuous conductors

Large magnetic field 

Lorentz force >> gravity force

Red: Copper

Blue: Helium 

Gap connection time ~ 2ms

Gap vaporisation time ~ 38ms
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• Non-linear voltage-current characteristic 

• VI characteristic determines current sharing between arc and structure

• Resistive circuit elements linking turns

• Conditions to initiate arcs

– T > 600°C 

– ΔV > 40V

• Conditions to initiate melt

– T Jacket > 1400°C

– melt resistor 'latching' 

21

Electrical - turn-turn and pancake arcs

1. Arcs placed at the edges of all viable zones at the start of each time-step

2. Electrical model iterates to find converged solution

3. Arcs with a driving voltage that falls below 40V removed

4. Arc volumetric heating split between to elements contacting each arc node

Arc algorithm
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• Kronhart arc model - data fit from experiment (constricted arcs)

• Holmes arc model – theoretical model permitting free arcs

Column potential an implicit function of temperature

Numerical solution necessary 

Solution Implemented using relaxed Newton-Rapson method

Holmes VI characteristic tabulated and passed to ANSYS

ANSYS model can accept any VI curve to represent different arc characteristics

Electrical - turn-turn and pancake arcs
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Early versions of code struggled with arc convergence: 
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Arc dV balances Coil dV

Solve for arc current (VI)

Update arc resistance, iterate… 

Convergence issue fixed with improved iteration scheme:

ANSYS data points (dots)

scattered around target VI curve

Electrical - turn-turn and pancake arcs
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Kronhardt model produces:

- the highest total arc power (36MW)

- largest total melt volume (0.65m3)

Influence of arc model on coil damage (ITER TF reference)

Electrical - turn-turn and pancake arcs
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Material Properties

Thermal conductivity Electrical resistivity

Specific heat capacity Temperature dependant materials

• composite materials developed for 

conductor (copper + Nb3Sn) and 

convector (convective resistance + 

steel) 

• anisotropic thermal conduction in 

conductor (perp x10 parallel)

Latent heats

Copper softening ('latching')

super-conducting model
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Benchmark with MagArc Code
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• Comparison of preliminary calculations (INL collaboration)

• Differences with MAGARC

– Model geometry and numerical solution (minor impact)

– quench propagation modelling (minor impact)

– Heat conduction and thermal material properties (minor impact)

– Arc modelling and assumptions (significant impact)

27

MagArc ANSYS model

Benchmark with MagArc Code
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Benchmark with MagArc Code

Adjustments in input to ANSYS code to facilitate comparison: 

• quench speed set to a constant (5m/s) 

• No special treatment for molten conductor (behaviour already similar)

• impact of melt short-circuits investigated with two simulations (disabled/enabled)

Integrated ANSYS model benchmarked with MagArc code 

developed by Brad Merrill at Idaho National Labs

ANSYS MagArc

Quench speed Variable: 

based on MIT model

Fixed:

5 m/s

Molten conductor Treat as conducting:

Inline breaks 'self repair'

Treat as break:

Inline arc carries current across 

break in conductor

Molten jacket Treat as mobile:

molten material short-circuits 

turns in radial direction

Treat as static:
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Benchmark with MagArc Code

time to complete quench similar for both codes

steps in quench fraction caused by 

pancake quench mechanism

melt short-circuits decrease 

time to complete quench
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Benchmark with MagArc Code

Close match for the start of discharge

(no melt short-circuits)

MagArc predicts electrical short across terminals

Fault coil discharge lower with melt short-circuits enabled
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Benchmark with MagArc Code
MagArc predicts a greater number of arcs

Melt short-circuits restrict arc number 

(decrease driving potential across turns)
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Benchmark with MagArc Code

Similar maximum voltage drop 

developed across coil terminals

ANSYS models bound MagArc 

simulation 

(fast coil bypass with melt 

short-circuits, slower without) 
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Selected Results of Qualified Analysis

Simulations run on the Freia compute cluster at CCFE, total CPU time = 2.5 years

• Simulations 1 and 2 used in benchmark exercise with MagArc code

• Reference simulations for TF, PF and CS shown in bold

• Maximum melt volume: TF (0.65 m3)

• Maximum average coil current: TF (121KA)

• Maximum external temperature: CS (3074K) - low melt volume
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Reference TF simulation 3

Temperature Current Density
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Reference TF simulation 3

Key:

Green: Conductor

Orange: Jacket

Pink: Quenched rejoins

Red: Electrical Arcs

Grey: Melt short-circuits

• Inductive coupling increases current > starting 68KA

• Pancake quench mechanism clear (orange > green)

• Arcs (red) and melt (grey) short-circuit sections of coil

• First 60 seconds shown
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Reference PF simulation 7

Temperature Current Density
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Reference PF simulation 7

Key:

Green: Conductor

Orange: Jacket

Pink: Quenched rejoins

Red: Electrical Arcs

Grey: Melt short-circuits

• Lower starting current and stored energy than TF

• Quench slow to propagate due to large coil diameter 

• Thick (square) steel jackets limit melt short-circuits

• Arcs extinguish as coil discharges

• First 120 seconds of simulation shown
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Reference CS simulation 10

Temperature Current Density
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Reference CS simulation 10

Key:

Green: Conductor

Orange: Jacket

Pink: Quenched rejoins

Red: Electrical Arcs

Grey: Melt short-circuits

• Lower starting current and stored energy than TF

• Quench slow to propagate due to large conductor length 

• Thick (square) steel jackets limit melt short-circuits

• Arcs extinguish as coil discharges

• First 120 seconds of simulation shown
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ITER reference simulations - quench fraction

• Double pancake quench mechanism for TF ensures faster quench than CS/PF
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ITER reference simulations - average current

• Stranded TF circuit and high stored energy result in large maximum current

• Maximum current for CS / PF similar

• Smaller stored energy in CS results in faster discharge compared to PF 
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ITER reference simulations - total melt volume

• TF generates much larger melt volume than CS / PF

• CS / PF melt volumes similar

fast solidification of localised melting due to arcs

slower solidification rate for 

melt from Joule heating 
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ITER reference simulations - external temperature

• Steel case surrounding TF winding pack keeps external temperature low

• Highest external temperature for CS simulation

• Both CS and PF temperature exceed melt however volume is small (0.022m3)

• Maximum PF temperature lower than CS due to 'two in hand' winding
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ITER reference simulations - arc power

• Largest maximum arc power in TF simulation

• TF jacket thin - fast jacket melting and the extinguishing of arcs (spikes in arc power)

• Thicker square section jacket of CS and PF ensure that arcs remain 'on' for longer
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ITER reference simulations - total power

• Total power deposited - sum of Joule heating and arc power

• TF coil only discharges twice as much energy than PF (stored energy much higher)

• PF discharges twice as much energy as CS but similar melt volumes (PF two in hand)
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• Integrated ANSYS model developed for TFC & PFC

• Model couples: quench / electrical / evolving arc network / thermal

• Model produces a thermal damage assessment

• Arc models would benefit from verification/improvement, e.g. conditions 

dependency; movement in a magnetic field

• Simulation results

• the driving circuit type, thermal model and the location of the initiating 

quench are all shown to have a significant impact on the accident’s 

evolution

• The length of the initiating quench and the arc model type are 

considered to exert a smaller influence

• Melt short circuits bypass zones with high energy deposition - spreading 

fault energy across larger volume  

• Comparison with MagArc

• MagArc compared to inline discharge with outer turn fault initiation

• Ability of melt pool to short circuit magnet found to have significant effect

• Similar trends between codes captured with melt short circuits disabled

Summary

46
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Detailed Results
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Detailed Results

• Matrix allows comparisons to be made between:

• Benchmark against MagArc code (1 and 2)

• Influence of arc model, Kronhardt vs Holmes (3 and 4)

• Influence of initiating quench location, inboard vs outboard (3 and 5)

• Influence of TF driving circuit, inline vs stranded (3 and 6)

• Additional failure of FDU6 (7 and 8)

Ten simulation test matrix for full TF, PF and CS models
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Temperature Current Density

Simulation 1 - MagArc reference (melt short-circuits disabled)
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Simulation 1 - MagArc reference (melt short-circuits disabled)
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Simulation 1 - MagArc reference (melt short-circuits disabled)



Simon McIntosh

CERN Seminar 25th April

52

Simulation 1 - MagArc reference (melt short-circuits disabled)
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Simulation 1 - MagArc reference (melt short-circuits disabled)
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Simulation 1 - MagArc reference (melt short-circuits disabled)
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Simulation 1 - MagArc reference (melt short-circuits disabled)
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Simulation 1 - MagArc reference (melt short-circuits disabled)
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Simulation 1 - MagArc reference (melt short-circuits disabled)
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Temperature Current Density

Simulation 2 - MagArc reference (melt short-circuits enabled)
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Simulation 2 - MagArc reference (melt short-circuits enabled)
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Simulation 2 - MagArc reference (melt short-circuits enabled)
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Simulation 2 - MagArc reference (melt short-circuits enabled)
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Simulation 2 - MagArc reference (melt short-circuits enabled)
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Simulation 2 - MagArc reference (melt short-circuits enabled)
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Simulation 2 - MagArc reference (melt short-circuits enabled)
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Simulation 2 - MagArc reference (melt short-circuits enabled)
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Simulation 2 - MagArc reference (melt short-circuits enabled)
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Temperature Current Density

Simulation 3 - TF reference 
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Simulation 3 - TF reference 
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Simulation 3 - TF reference 
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Simulation 3 - TF reference 
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Simulation 3 - TF reference 
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Simulation 3 - TF reference 
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Simulation 3 - TF reference 
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Simulation 3 - TF reference 
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Simulation 3 - TF reference 
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Temperature Current Density

Simulation 4 - TF reference (+ Holmes arc model) 
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Simulation 4 - TF reference (+ Holmes arc model) 
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Simulation 4 - TF reference (+ Holmes arc model) 
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Simulation 4 - TF reference (+ Holmes arc model) 
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Simulation 4 - TF reference (+ Holmes arc model) 
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Simulation 4 - TF reference (+ Holmes arc model) 
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Simulation 4 - TF reference (+ Holmes arc model) 
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Simulation 4 - TF reference (+ Holmes arc model) 
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Simulation 4 - TF reference (+ Holmes arc model) 
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Temperature Current Density

Simulation 5 - TF reference (+ outer turn initiation) 
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Simulation 5 - TF reference (+ outer turn initiation) 
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Simulation 5 - TF reference (+ outer turn initiation) 
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Simulation 5 - TF reference (+ outer turn initiation) 
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Simulation 5 - TF reference (+ outer turn initiation) 
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Simulation 5 - TF reference (+ outer turn initiation) 
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Simulation 5 - TF reference (+ outer turn initiation) 
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Simulation 5 - TF reference (+ outer turn initiation) 
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Simulation 5 - TF reference (+ outer turn initiation) 
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Temperature Current Density

Simulation 6 - TF reference (+ inline discharge) 
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Simulation 6 - TF reference (+ inline discharge) 
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Simulation 6 - TF reference (+ inline discharge) 
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Simulation 6 - TF reference (+ inline discharge) 
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Simulation 6 - TF reference (+ inline discharge) 
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Simulation 6 - TF reference (+ inline discharge) 
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Simulation 6 - TF reference (+ inline discharge) 
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Simulation 6 - TF reference (+ inline discharge) 
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Simulation 6 - TF reference (+ inline discharge) 
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Temperature Current Density

Simulation 7 - PF reference
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Simulation 7 - PF reference
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Simulation 7 - PF reference
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Simulation 7 - PF reference



Simon McIntosh

CERN Seminar 25th April

107

Simulation 7 - PF reference
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Simulation 7 - PF reference
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Simulation 7 - PF reference



Simon McIntosh

CERN Seminar 25th April

110

Simulation 7 - PF reference
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Simulation 7 - PF reference



Simon McIntosh

CERN Seminar 25th April

112

Temperature Current Density

Simulation 8 - PF reference (+ no PDU6)
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Simulation 8 - PF reference (+ no PDU6)
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Simulation 8 - PF reference (+ no PDU6)
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Simulation 8 - PF reference (+ no PDU6)
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Simulation 8 - PF reference (+ no PDU6)
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Simulation 8 - PF reference (+ no PDU6)
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Simulation 8 - PF reference (+ no PDU6)
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Simulation 8 - PF reference (+ no PDU6)
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Simulation 8 - PF reference (+ no PDU6)

No Arcs
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Temperature Current Density

Simulation 9 - PF2
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Simulation 9 - PF2



Simon McIntosh

CERN Seminar 25th April

123

Simulation 9 - PF2
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Simulation 9 - PF2



Simon McIntosh

CERN Seminar 25th April

125

Simulation 9 - PF2
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Simulation 9 - PF2
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Simulation 9 - PF2
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Simulation 9 - PF2
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Simulation 9 - PF2

No Arcs



Simon McIntosh

CERN Seminar 25th April

130

Temperature Current Density

Simulation 10 - CS5
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Simulation 10 - CS5



Simon McIntosh

CERN Seminar 25th April

132

Simulation 10 - CS5
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Simulation 10 - CS5
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Simulation 10 - CS5
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Simulation 10 - CS5
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Simulation 10 - CS5
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Simulation 10 - CS5
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Simulation 10 - CS5
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Sensitivity studies
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Sensitivity study – grid convergence
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Total Power Maximum Temperature

Finer Grid

Finer Grid

Simulation data produced using 100 divisions (TF reference)

Dependance of time-step on total power on swept FE grid resolution
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Sensitivity study – time step convergence
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Δt < 5s

Δt reducing

Dependance of time-step on total power and maximum temperature

Δt ≡ load-step update (single sub-step)

Total Power Maximum Temperature

Simulation data produced using Δt=1s
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Electrical - arcs (model development)



Load 

resistor

arc

resistor

Polynomial fit from TF simulation

• R(t) applied as load resistor

• Arc enabled when dV>100V

• Kronhart arc verified with SPICE model

• Holmes arc implemented, V fn (current, pressure, diameter, temperature)

Electrical - arcs (model development)



Electrical - arcs (model development)

Kronhart model verification



Column Potential

Holmes arc model



Holmes arc model

Column Diameter



Holmes arc model

Column Temperature



Holmes arc ANSYS test-bench


