

Overview and assessment of electrical arcing faults in ITER superconducting magnets system

Shanliang Zheng

Integrated model: Simon McIntosh Electrical: Kim Cave-Ayland Thermal damage: Fred Domptail Arc: Andrew Ash, Andrew Holmes Safety advisor: Neill Taylor ITER Organization: Kazuya Hamada ITER Organization: Neil Mitchell

Outline

- Introduction
- Methodology
- ITER application
- Summary
- Further R&D

Introduction

Safety concerns to ITER superconducting magnets

- Large amount of magnetic energy stored in ITER superconducting coils: ~40GJ in TFC and up to ~10GJ in CS/PFC
- The consequences (damaging magnets or adjacent components?) if the massive energy localised
- Safety questions from French Regulator

Prevention/protection applied to ITER magnets

- Quench detection system: voltage; helium mass flow and pressure
- Fast discharge unit to discharge stored energy

Previous analyses were done >10 years ago

- The expertise developed the analysis tools has not been maintained (retirement etc.)
- More/further detailed and qualified analyses are required computing technology has been developing rapidly to allow better analysis tool development

X.

JK Atomic

Introduction

- Damage to magnets (internal arcs)
 - in TF coil: unmitigated quench (benchmark vs. MAGARC-TF/INL)
 - in PF coil: unmitigated quench or electrical short in PF-3
 - In Busbar
- Damage to adjacent components (external arcs)
 - From coils to VV
 - Molten materials from PF-3 → vacuum vessel port extension
 - External electric arcs from PF-3 to thermal shield and vacuum vessel
 - Arcs in Busbar

UK Atomic

Energy <u>Autho</u>rity

Methodology –work flowchart

Methodology

Methodology – work scope

Integrated ANSYS model (presentation by S. McIntosh)

- Python programme and APDL
 - to build geometry
 - To couple multiple physics
 - Post-processing results
- Quench in superconductor
- Electrical circuit
- Arc models
- Thermal assessment
- Arc models
- Electrical simulations
- Thermal damage assessment

Integrated ANSYS modelling

Simon McIntosh <u>Simon.McIntosh@iter.org</u>

Details to be presented by Simon McIntosh

Integrated ANSYS model

- ANSYS as platform to integrate
 - ITER coils geometry
 - Quench + electrical network + arc + thermal damage
- Benchmark vs. MAGARC (INL/US)

UK Atomic

Energy

Authority

Results for TFC – thermal damage

Results for TFC – V, I, power, melting volume

Arc model

Andrew Ash, Andrew Holmes

Andrew.Ash@ukaea.uk

andrew@marchsci.demon.co.uk

Arc models

- Kronhardt model (constrained arcs)
- Holmes model (positive column)
- Simplified Holmes model (positive column approximation)
- Ayrton model (arc in air)

'Kronhardt' model

- Einfluß von Kurzschlüssen und Lichetögen auf die Sicherheit von Magnetsystemen, H. Kronhardt, Karlsruhe Nuclear Research Centre, 1993, (The Impact of Short-Circuits and Electric Arcs on the Safety of Magnet Systems). <u>www.kit.edu</u>.
- Also check: Arcing experiments for magnet safety investigations by Juengst, K.P.; Kronhardt, H.; Oehmann, M.; Herring, J.S. (Association Euratom-Kernforschungszentrum Karlsruhe GmbH (KFK) (Germany, F.R.)) from Fusion technology 1988. V. 2

$$V_{arc} = V_o + \Delta_g \left(1.75 + 0.012 \, j^{1.75} \right)$$

 $V_{arc} = \text{arc voltage drop (V)}$ $V_o = \text{minimum gap voltage (40 V from Ref. 6)}$ $\Delta_g = \text{gap width (mm)}$ $j = \text{current density (A/mm^2)} = I_{TF}/A_{arc}$

UK Atomic Enerav

Authority

6) H. Kronhardt, Einfluß von Kurzschlüssen und Lichtbögen auf die Sicherheit von

Magnetsystemen, Insitut für Technische Physik, Kfk 5096, S. 49, Mai 1993.

Used by MAGARC (INL/US), MAGS (KIT/Germany)

'Holmes' model

- Column potential an implicit function of temperature
- Numerical solution
- Solution Implemented using relaxed Newton-Rapson method

Arc Column E fn (current density)

'Ayrton' and 'Kronhardt' Arc Models

 For cooled copper electrodes, the arc discharge has a negative resistance over a wide current range that depends on the column length, L

UK Atomic

Energy

Authoritv

'Kronhardt' and 'Holmes' Arc Models

Arc model in ANSYS

- Non-linear voltage-current characteristic
- Resistive circuit elements linking turns
- Conditions to initiate arcs
 - *T*>600° C
 - Δ*V*>40V
- Power dissipated in arc → volumetric heating to electrically conductive elements

UK Atomic

Enerav

Authoritv

'Kronhardt' and 'Holmes' arcs in ANSYS model

- 'Kronhardt' arcs have greater power than 'Holmes' arcs greater localization
- Similar total energy dissipation

Electrical simulation

Kim Cave-Ayland, Simon McIntosh <u>Kim.Cave-Ayland@ukaea.uk</u> <u>Simon.McIntosh@iter.org</u>

Electrical simulations

- To guide the simplification of electrical circuits for TF and PF/CS coils to be implemented in ANSYS
- To verify the simplification implemented in ANSYS model
- To simulate the electrical responses with arcs presence in a 'global' circuit network → arcing V-I and power for further thermal damage assessment
 - TF coils (FDU, busbar, surrounding structures)
 - PF/CS (FDU, busbar, surrounding structures)

Simplified TFC circuit with **FDUs**

Further simplified TFC circuit with FDU for ANSYS

Energy

or a Low Carbon Future

23

PF/CS electrical circuit + VV/TS/Cryostat

Spice model of CS and PF circuits with the cryostat and vacuum vessel port extension

New electrical paths from PF to VV/Cryostat

New electrical paths due to double ground fault to PF-3 busbar

Electrical arc model

- Arc is simulated electrically (Pspice & LTspice)
- Arc is packed into one element (LTspice)
 - Easier integration
 - Multiple arcs

Thermal damage assessment

Fred Domptail

Fred.Domptail@ukaea.uk

Thermal damage

External damage mechanism (PF→VV)

- Damage caused by the molten materials from coils (internal arcs)
- Damage caused by direct electric arcs between coils and VV components (external arcs)

Thermal damage by molten materials

- Approximation for WORST safety case
- Maximum heat transferred into VV steel plate
 - the total energy is equivalent to the maximum stored energy (3.24GJ) in the PF-3 coil @45kA
 - Varying contact surfaces

	Temperature (°C)	Volume (m ³)	Footprint (m ²)	Total energy (GJ)
Case 1	1744	0.3	1.60	3.24
Case 2	1744	0.2	1.60	2.16
Case 3	1744	0.1	1.60	1.08
Case 4	1744	0.2	1.06	2.16
Case 5	1744	0.1	0.53	1.08
Case 6	2000	0.1	1.60	1.19
Case 7	1744	0.3	0.4	3.24
Case 8	2877	0.2	1.06	3.24
1500 1400 1400 1300 1300 1000 1000	Case 2 - Top Case 3 - Top Steel me	- Case 2 - Bottom - Case 3 - Bo	1500 1400 1300 1300 1100 1100	- Case 5 - Top - Case 5 - Top - Case 6 - Top - Case 6 - B Steel melting temperature
900	• • • • • • • • • • • • • • • • • • •	_	900	

maximum temperature on top and bottom of the vessel plate

Temperature at the bottom of the 1st layer of VV/port wall

case 7 (Temperature = 1744 °C, Total Energy = 3.24 GJ, Volume = 0.3 m^3 , Footprint area = 0.4 m^2)

case 8 (Temperature = 2887 °C, Total Energy = 3.24 GJ, Volume = 0.2 m³, Footprint area = 1.06 m²)

UK Atomic

FUSION ENERGY

Energy

Authority

Peak deformation of the layer of EQ-port wall

Thermal damage by arc between PF3 & VV

- Electrical simulations used approximate Holmes arc model
 - 4 pressures: 0.1, 0.5, 1, 2 [bar]
- 4 failure modes:
 - Protection system operates as expected
 - PF3 FDU does not operate
 - PF3 PS and PMS fail but PF3 FDU operates

- Arc current and column power at different pressure
- Failure mode: FDU on, PS off, PMS on

External arcs – heat transfer

- Unconstrained and static arc between two parallel plates
 - The arc is considered static because its displacement can not been predicted accurately.
 - The arc is assumed to occur between the equatorial port and the PF3 coil (arc length of 0.2m)
 - It is assumed that the arc occurs between two parallel plates, the upper one being the vessel shell and the cathode (worst case).

- External arcs between PF-3 coil and VV/port wall/TS
- Arc current and power: not high enough; relatively short lasting

Temperature profile of the vessel port top layer at the peak value with constant arc power

Summary

Models development

- Integrated ANSYS model
 - Geometry and materials property
 - Quench
 - Electrical circuit
 - Arc models integration
 - Thermal damage
- Electrical simulation for simplification and verification
- Thermal damage assessment
- Arc models
- ITER application: arcing damage towards VV
 - PF/CS: PF-3 coil
 - TF coil benchmark with MAGARC (INL/US)
- Fault/accident scenarios

UK Atomic

Enerav

Authoritv

Further R&D

Further development

- Arc models initiation and integration
- Impact of magnetic field and induced current
- Arc possibility in busbar
- Integration for external arcs assessment

Validation and benchmark

- Sensitivity study for integrated ANSYS model
- Benchmark/Validation, e.g. with LHC incident 2008

Consequence study extension

- Structural/mechanical impact on coils due to internal faults propagation
- Helium pressure evolvement and potential impact

Back-up slides

Electrical field

Ruben Otin <u>Ruben.Otin@ukaea.uk</u>

Example of electrical field (1/2)

 Voltage (40V) applied to the conductor and jackets in PFC-3 by open-source finite element software ERMES

Example of electrical field (2/2)

• Voltage (1kV) applied to crosssection of six PFCs by ERMES

Electrical field

To identify weak points for arcs

Arc pulse (1kA, 0.1ms) induced B-field