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• Safety concerns to ITER superconducting magnets
– Large amount of magnetic energy stored in ITER superconducting 

coils: ~40GJ in TFC and up to ~10GJ in CS/PFC

– The consequences (damaging magnets or adjacent components?) 

if the massive energy localised

– Safety questions from French Regulator

• Prevention/protection applied to ITER magnets
– Quench detection system: voltage; helium mass flow and pressure

– Fast discharge unit to discharge stored energy

• Previous analyses were done >10 years ago

– The expertise developed the analysis tools has not been 

maintained (retirement etc.) 

– More/further detailed and qualified analyses are required –

computing technology has been developing rapidly to allow better 

analysis tool development

Introduction
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• Damage to magnets (internal 

arcs)

– in TF coil: unmitigated quench 

(benchmark vs. MAGARC-TF/INL)

– in PF coil: unmitigated quench or 

electrical short in PF-3

– In Busbar

• Damage to adjacent 

components (external arcs)

– From coils to VV

• Molten materials from PF-3 �

vacuum vessel port extension

• External electric arcs from PF-3 to 

thermal shield and vacuum vessel

– Arcs in Busbar

Introduction
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• Integrated ANSYS model (presentation by S. McIntosh)

– Python programme and APDL

• to build geometry

• To couple multiple physics

• Post-processing results

– Quench in superconductor

– Electrical circuit

– Arc models

– Thermal assessment

• Arc models

• Electrical simulations 

• Thermal damage assessment

Methodology – work scope



Integrated ANSYS modelling

Simon McIntosh

Simon.McIntosh@iter.org

Details to be presented by Simon McIntosh
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• ANSYS as platform to integrate

– ITER coils geometry

– Quench + electrical network + arc + 

thermal damage

• Benchmark vs. MAGARC (INL/US)

Integrated ANSYS model

TFC cross-section

PFC cross-section

Circular shape
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Electrical circuit

Quench propagation Electrical arcs 

TFC electrical inductances
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Results for TFC – thermal damage

11
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Voltage 

at different TF fault scenarios

Melted volume 

at different TF fault scenarios
Dissipation power 

at different TF fault scenarios

Current 

at different TF fault scenarios

Results for TFC – V, I, power, melting volume
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Arc model

Andrew Ash, Andrew Holmes

Andrew.Ash@ukaea.uk

andrew@marchsci.demon.co.uk



14

• Kronhardt model (constrained arcs)

• Holmes model (positive column)

• Simplified Holmes model (positive column 

approximation)

• Ayrton model (arc in air)

Arc models
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‘Kronhardt’ model

• Einfluß von Kurzschlüssen und Lichetögen auf die Sicherheit 

von Magnetsystemen, H. Kronhardt, Karlsruhe Nuclear 

Research Centre, 1993, (The Impact of Short-Circuits and 

Electric Arcs on the Safety of Magnet Systems).  www.kit.edu.

• Also check: Arcing experiments for magnet safety investigations by Juengst, 

K.P.; Kronhardt, H.; Oehmann, M.; Herring, J.S. (Association Euratom-

Kernforschungszentrum Karlsruhe GmbH (KFK) (Germany, F.R.)) from 

Fusion technology 1988. V. 2

Used by MAGARC (INL/US), MAGS (KIT/Germany)
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‘Holmes’ model

• Column potential an implicit function of temperature

• Numerical solution

• Solution Implemented using relaxed Newton-Rapson 

method

• Pressure

• Temperature

• Diameter

• Length

• Current

• Voltage 

(electrical field)

• Plasma density
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‘Ayrton’ and ‘Kronhardt’ Arc Models

Ayrton
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Constants Cooled copper

α 26.6 

β 2.2

γ 32.4
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B. Merrill, Annex 4B(DDD11-8);

B. Merrill, Fusion Tech, 37, 2000
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‘Kronhardt’ and ‘Holmes’ Arc Models
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• Non-linear voltage-current characteristic

• Resistive circuit elements linking turns

• Conditions to initiate arcs

– T>600°C 

– ∆V>40V

• Power dissipated in arc � volumetric heating to 

electrically conductive elements

Arc model in ANSYS

19
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• ‘Kronhardt’ arcs have greater power than ‘Holmes’ arcs –

greater localization

• Similar total energy dissipation

‘Kronhardt’ and ‘Holmes’ arcs in ANSYS model
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Electrical simulation

Kim Cave-Ayland, Simon McIntosh

Kim.Cave-Ayland@ukaea.uk

Simon.McIntosh@iter.org

21
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• To guide the simplification of electrical circuits for 

TF and PF/CS coils to be implemented in ANSYS

• To verify the simplification implemented in ANSYS 

model

• To simulate the electrical responses with arcs 

presence in a ‘global’ circuit network ���� arcing V-I 

and power for further thermal damage assessment

– TF coils (FDU, busbar, surrounding structures)

– PF/CS (FDU, busbar, surrounding structures)

Electrical simulations
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Simplified TFC 

circuit with 

FDUs

Further simplified 

TFC circuit with FDU 

for ANSYS
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PF/CS electrical circuit + VV/TS/Cryostat

Spice model of CS and PF circuits with the cryostat and vacuum vessel port extension
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New electrical paths from PF to VV/Cryostat



26

New electrical paths due to double ground fault to PF-3 

busbar
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Electrical arc model

• Arc is simulated electrically (Pspice & LTspice)

• Arc is packed into one element (LTspice)

– Easier integration

– Multiple arcs
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Thermal damage assessment

Fred Domptail

Fred.Domptail@ukaea.uk

28
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• External damage mechanism (PF����VV)

– Damage caused by the molten materials from coils (internal arcs)

– Damage caused by direct electric arcs between coils and VV 

components (external arcs)

Thermal damage

PF-3

PF-4
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• Approximation for WORST safety case

• Maximum heat transferred into VV steel plate

– the total energy is equivalent to the maximum stored energy 

(3.24GJ) in the PF-3 coil @45kA

– Varying contact surfaces

Thermal damage by molten materials

PF-3

Equatorial 

ports FE model
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Temperature (°°°°C) Volume (m3) Footprint (m2) Total energy (GJ)

Case 1 1744 0.3 1.60 3.24

Case 2 1744 0.2 1.60 2.16

Case 3 1744 0.1 1.60 1.08

Case 4 1744 0.2 1.06 2.16

Case 5 1744 0.1 0.53 1.08

Case 6 2000 0.1 1.60 1.19

Case 7 1744 0.3 0.4 3.24

Case 8 2877 0.2 1.06 3.24
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case 7 (Temperature = 1744 °°°°C, Total 
Energy = 3.24 GJ, Volume = 0.3 m3, 

Footprint area = 0.4 m2)

case 8 (Temperature = 2887 °°°°C, Total 
Energy = 3.24 GJ, Volume = 0.2 m3, 

Footprint area = 1.06 m2)

Temperature at the bottom of the 1st layer of VV/port wall
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Peak deformation of the layer of EQ-port wall
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• Electrical simulations used approximate Holmes arc 

model

– 4 pressures: 0.1, 0.5, 1, 2 [bar]

• 4 failure modes:

– Protection system operates as expected

– PF3 FDU does not operate

– PF3 PS and PMS fail but PF3 FDU operates

– PF3 protection system fails completely

Thermal damage by arc between PF3 & VV
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• Arc current and column power at different pressure 

• Failure mode: FDU on, PS off, PMS on
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• Unconstrained and static arc between two parallel plates
– The arc is considered static because its displacement can not been 

predicted accurately.

– The arc is assumed to occur between the equatorial port and the PF3 

coil (arc length of 0.2m)

– It is assumed that the arc occurs between two parallel plates, the upper 

one being the vessel shell and the cathode (worst case).

• Cathode spot heat 

• Radiation

• Convection

External arcs – heat transfer
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• External arcs between PF-3 coil and VV/port wall/TS

• Arc current and power: not high enough; relatively short 

lasting
Temperature profile of the TS layer at the peak value 

with evolving arc

Temperature profile of the vessel port top layer at the peak 

value with constant arc power
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• Models development

– Integrated ANSYS model

• Geometry and materials property

• Quench

• Electrical circuit

• Arc models integration

• Thermal damage

– Electrical simulation for simplification and verification

– Thermal damage assessment

– Arc models

• ITER application: arcing damage towards VV

– PF/CS: PF-3 coil

– TF coil – benchmark with MAGARC (INL/US)

• Fault/accident scenarios

Summary

38
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Further R&D
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• Further development

– Arc models initiation and integration

– Impact of magnetic field and induced current

– Arc possibility in busbar 

– Integration for external arcs assessment

• Validation and benchmark

– Sensitivity study for integrated ANSYS model

– Benchmark/Validation, e.g. with LHC incident 2008

• Consequence study extension

– Structural/mechanical impact on coils due to internal faults 

propagation

– Helium pressure evolvement and potential impact

Further R&D



Electrical field

Ruben Otin

Ruben.Otin@ukaea.uk

41

Back-up slides
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• Voltage (40V) applied to the 

conductor and jackets in PFC-3 

by open-source finite element 

software ERMES

Example of electrical field (1/2)

Voltage 

Electrical field
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• Voltage (1kV) applied to cross-

section of six PFCs by ERMES

Example of electrical field (2/2)

Voltage

Electrical field
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Electrical field Secondary magnetic field

To identify weak points for arcs Arc pulse (1kA, 0.1ms) induced B-field 


