

Overview and assessment of electrical arcing faults in ITER superconducting magnets system

Shanliang Zheng

Integrated model: Simon McIntoshElectrical: Kim Cave-Ayland Thermal damage: Fred Domptail Arc: Andrew Ash, Andrew HolmesSafety advisor: Neill Taylor**ITER Organization: Kazuya Hamada** ITER Organization: Neil Mitchell

激

UK Atomic Energy **Authority**

Outline

- Introduction
- Methodology
- ITER application
- Summary
- Further R&D

邋

UK Atomic

Energy Authority

Introduction

• Safety concerns to ITER superconducting magnets

- Large amount of magnetic energy stored in ITER superconducting

sailor 400 lin TEC and up to 400 lin CS/DEC coils: ~40GJ in TFC and up to ~10GJ in CS/PFC
- $-$ The consequences (damaging magnets or adia The consequences (damaging magnets or adjacent components?) if the massive energy localised
- Safety questions from French Regulator

• Prevention/protection applied to ITER magnets

- Quench detection system: voltage; helium mass flow and pressure
- Fast discharge unit to discharge stored energy

• Previous analyses were done >10 years ago

- The expertise developed the analysis tools has not been
maintained (retirement ats) maintained (retirement etc.)
- More/further detailed and qualified analyses are required –
computing to shareholds: here heave developing regidly to allow computing technology has been developing rapidly to allow better analysis tool development

UK Atomic

Introduction

- • Damage to magnets (internal arcs)
	- in TF coil: unmitigated quench (benchmark vs. MAGARC-TF/INL)
	- in PF coil: unmitigated quench or electrical short in PF-3
	- In Busbar
- • Damage to adjacent components (external arcs)
	- From coils to VV
		- Molten materials from PF-3 \rightarrow vacuum vessel port extension
		- External electric arcs from PF-3 to thermal shield and vacuum vessel
	- Arcs in Busbar

总

UK Atomic

Energy Authority

Methodology –work flowchart

Methodology

Methodology – work scope

•Integrated ANSYS model (presentation by S. McIntosh)

- Python programme and APDL
	- to build geometry
	- To couple multiple physics
	- Post-processing results
- Quench in superconductor
- Electrical circuit
- Arc models
- Thermal assessment
- Arc models
- •Electrical simulations
- •Thermal damage assessment

Integrated ANSYS modelling

Simon McIntoshSimon.McIntosh@iter.org

Details to be presented by Simon McIntosh

Integrated ANSYS model

- • ANSYS as platform to integrate
	- ITER coils geometry
	- Quench + electrical network + arc + thermal damage
- •Benchmark vs. MAGARC (INL/US)

UK Atomic

Energy Authority

Results for TFC – thermal damage

Results for TFC – V, I, power, melting volume

Arc model

Andrew Ash, Andrew Holmes

Andrew.Ash@ukaea.uk

andrew@marchsci.demon.co.uk

Arc models

- •Kronhardt model (constrained arcs)
- •Holmes model (positive column)
- • Simplified Holmes model (positive column approximation)
- \bullet Ayrton model (arc in air)

'Kronhardt' model

- • Einfluß von Kurzschlüssen und Lichetögen auf die Sicherheit von Magnetsystemen, H. Kronhardt, Karlsruhe Nuclear Research Centre, 1993, (The Impact of Short-Circuits and Electric Arcs on the Safety of Magnet Systems). www.kit.edu.
- •Also check: Arcing experiments for magnet safety investigations by Juengst, K.P.; Kronhardt, H.; Oehmann, M.; Herring, J.S. (Association Euratom-Kernforschungszentrum Karlsruhe GmbH (KFK) (Germany, F.R.)) from Fusion technology 1988. V. 2

$$
\left\{ V_{arc} = V_o + \Delta_g \left(1.75 + 0.012 j^{1.75} \right) \right\}
$$

 V_{arc} $=$ arc voltage drop (V) $=$ minimum gap voltage (40 V from Ref. 6) V_{α} $=$ gap width (mm) Δ_{\circ} = current density $(A/mm^2) = I_{TF}/A_{arc}$ \overline{I}

瀛

UK Atomic Energy Authoritv

H. Kronhardt, Einfluß von Kurzschlüssen und Lichtbögen auf die Sicherheit von 6)

Magnetsystemen, Insitut für Technische Physik, Kfk 5096, S. 49, Mai 1993.

Used by MAGARC (INL/US), MAGS (KIT/Germany)

'Holmes' model

- •Column potential an implicit function of temperature
- •Numerical solution
- Solution Implemented using relaxed Newton-Rapson method

Arc Column E fn (current density)

'Ayrton' and 'Kronhardt' Arc Models

• For cooled copper electrodes, the arc discharge has a negative resistance over a wide current range that depends on the column length, L

UK Atomic

Energy Authority

'Kronhardt' and 'Holmes' Arc Models

Arc model in ANSYS

- •Non-linear voltage-current characteristic
- Resistive circuit elements linking turns
- Conditions to initiate arcs
	- $-7 > 600^{\circ}$ C
	- [∆]V>40V
- Power dissipated in arc \rightarrow volumetric heating to alectrically conductive elements electrically conductive elements

瀛

UK Atomic

Enerav Authoritv

'Kronhardt' and 'Holmes' arcs in ANSYS model

- • 'Kronhardt' arcs have greater power than 'Holmes' arcs – greater localization
- Similar total energy dissipation

Electrical simulation

Kim Cave-Ayland, Simon McIntoshKim.Cave-Ayland@ukaea.ukSimon.McIntosh@iter.org

Electrical simulations

- To guide the simplification of electrical circuits for TF and PF/CS coils to be implemented in ANSYS
- To verify the simplification implemented in ANSYS model
- To simulate the electrical responses with arcs presence in a 'global' circuit network → arcing V-I
and nower for further thermal damage assessmen and power for further thermal damage assessment
	- TF coils (FDU, busbar, surrounding structures)
	- PF/CS (FDU, busbar, surrounding structures)

Simplified TFC circuit with FDUs

Further simplified TFC circuit with FDU for ANSYS

Energy

or a Low Carbon Future

PF/CS electrical circuit + VV/TS/Cryostat

Spice model of CS and PF circuits with the cryostat and vacuum vessel port extension

New electrical paths from PF to VV/Cryostat

New electrical paths due to double ground fault to PF-3 busbar

Electrical arc model

- •Arc is simulated electrically (Pspice & LTspice)
- • Arc is packed into one element (LTspice)
	- – $-$ Easier integration
	- –– Multiple arcs

Thermal damage assessment

Fred Domptail

Fred.Domptail@ukaea.uk

Thermal damage

• External damage mechanism (PF \rightarrow VV)

- –Damage caused by the molten materials from coils (internal arcs)
- – Damage caused by direct electric arcs between coils and VV components (external arcs)

Thermal damage by molten materials

- Approximation for WORST safety case
- \bullet Maximum heat transferred into VV steel plate
	- –the total energy is equivalent to the maximum stored energy $(3.34 \text{ C} \cdot \text{N})$ is the DF 3.00% \odot 45% N $(3.24GJ)$ in the PF-3 coil $@45kA$
	- –Varying contact surfaces

maximum temperature on top and bottom of the vessel plate

Temperature at the bottom of the 1st layer of VV/port wall

case 7 (Temperature = 1744 °C, Total Energy = 3.24 GJ, Volume = 0.3 m³, Footprint area = 0.4 m²)

case 8 (Temperature = 2887 °C, Total Energy = 3.24 GJ, Volume = 0.2 m³, Footprint area = 1.06 m²)

UK Atomic

FUSION

Energy Authority

Peak deformation of the layer of EQ-port wall

Thermal damage by arc between PF3 & VV

- • Electrical simulations used approximate Holmes arc model
	- 4 pressures: 0.1, 0.5, 1, 2 [bar]
- 4 failure modes:
	- Protection system operates as expected
	- PF3 FDU does not operate
	- PF3 PS and PMS fail but PF3 FDU operates

- Arc current and column power at different pressure
- Failure mode: FDU on, PS off, PMS on

External arcs – heat transfer

- • Unconstrained and static arc between two parallel plates
	- The arc is considered static because its displacement can not been
example to accurately predicted accurately.
	- The arc is assumed to occur between the equatorial port and the PF3 coil (arc length of 0.2m)
	- It is assumed that the arc occurs between two parallel plates, the upper one being the vessel shell and the cathode (worst case).

- •External arcs between PF-3 coil and VV/port wall/TS
- Arc current and power: not high enough; relatively short •lasting

Temperature profile of the vessel port top layer at the peak value with constant arc power

Summary

•Models development

- Integrated ANSYS model
	- Geometry and materials property
	- Quench
	- Electrical circuit
	- Arc models integration
	- Thermal damage
- Electrical simulation for simplification and verification
- Thermal damage assessment
- Arc models
- ITER application: arcing damage towards VV
	- PF/CS: PF-3 coil
	- TF coil benchmark with MAGARC (INL/US)
- Fault/accident scenarios

瀛

Enerav Authoritv

UK Atomic

Further R&D

• Further development

- Arc models initiation and integration
- Impact of magnetic field and induced current
- Arc possibility in busbar
- Integration for external arcs assessment

• Validation and benchmark

- Sensitivity study for integrated ANSYS model
- Benchmark/Validation, e.g. with LHC incident 2008

• Consequence study extension

- Structural/mechanical impact on coils due to internal faults propagation
- Helium pressure evolvement and potential impact

Back-up slides

Electrical field

Ruben OtinRuben.Otin@ukaea.uk

Example of electrical field (1/2)

 \bullet Voltage (40V) applied to the conductor and jackets in PFC-3 by open-source finite element software ERMES

000000 \bigcirc

Example of electrical field (2/2)

• Voltage (1kV) applied to cross-
costing of six BECs by EDMES section of six PFCs by ERMES

Electrical field

To identify weak points for arcs **Arc pulse (1kA, 0.1ms) induced B-field**

