

Billion-fold improvement in NMR sensitivity and study of metal-ion interaction with biomolecules

Magdalena Kowalska kowalska@cern.ch CERN, Experimental Physics Department

Outline

- NMR and its limits
- Paths to ultra-sensitivity:
 - > Hyperpolarization with lasers
 - > Radioactive probe nuclei
- Experiment
- Studies of metals in biology

Nuclear Magnetic Resonance

NMR: technique allowing identification of complex assemblies of atoms in molecules

- Participants:
 - > Probe atoms (nuclear spin different from 0 = they can be oriented in magnetic fields)
 - Sample/ environment to be studied
- Magnetic field
 - > Strong static field (B)
 - Weaker field oscillating at radio-frequency (MHz)

 ΔE

NMR and role of metal ions in biology

- Role of metal ions in human body depends on adopted coordination environment
- Na(I), K(I), Mg(I), Cu(I), Zn(II):
 - Among most abundant cations in living organisms
 - ➤ Right concentration crucial for correct functioning of cellular processes
- Challenges in studying them:
 - Often closed electron shells, thus invisible in many methods;
 - in NMR: almost invisible signals due to small abundance, spin > 1/2, and small sensitivity (due to small magnetic moment)

- Sensitivity of conventional NMR is very (or even too) low
- => ultra-sensitive NMR approaches needed

NMR limitation: sensitivity

- Why is NMR so unsensitive
 - Small degree of (thermal) polarization
 - > Inefficient detection
- Our combined paths to increase sensitivity
 - Hyperpolarization
 - Detection of particles

Hyperpolarization

- Aligning almost all spins in one direction, e.g. using laser light
 - ➤ Laser-polarize Rb and transfer it to He to image patient lungs
- Works best for metal ions (alkali and alkali earth)
- Gain up to 10⁵ in sensitivity

Detection of particles: beta decay

- Beta = electron (β-) or positron (β+) emitted by an atomic nucleus
- Many unstable atomic nuclei decay by emitting a beta particle
- Beta particles are emitted mostly in the direction of the spin
- => Gain in NMR detection efficiency: up to 10⁵

Beta-(detected) NMR

- Same principles as conventional NMR
- Ingredients:
 - Radioactive (short-lived) NMR-active atoms decaying via emission of beta particles
 - Beta particles emitted in spin direction
- Detection of resonance:
 - > Asymmetry in beta decay in space
 - At resonance: decrease in asymmetry
- When combined with hyperpolarization
- => Beta-NMR can be up to 10¹⁰ more sensitive than conventional NMR

How to perform beta-NMR?

- How do I make radioactive nuclei?
- How do I hyperpolarize then?
- How do I get them into my sample?
- How do they get to the biomolecule of interest?

ISOLDE laboratory

CERN's facility for production and research with radioactive nuclei

Experimental setup

How to get to my sample?

Challenges and constraints:

- Vacuum/liquid interface with small probe-beam and polarization loss
- Quick transport and binding to biomolecule

Probe nuclei

Nucleus	Radioactive half-life	Nuclear spin
8Li	0.84 s	2
9Li	0.18 s	3/2
11Be	13.8	1/2
26Na	1.1 s	3
27Na	0.3 s	5/2
28Na	30 ms	1
29Mg 31Mg	1.2 s 0.25 s	3/2 1/2

Planned

	Radioactive	Nuclear
Nucleus	half-life	spin
37K	1.2 s	3/2
49K	1.3 s	1/2
39Ca	0.8 s	3/2
51Ca	0.36 s	3/2
58Cu	3.2 s	1
74Cu	1.6 s	2
75C u	1.2 s	5/2
75Zn	10 s	7/2
75Zn*	5 s	1/2
77Zn	2 s	7/2
77Zn*	1.1 s	1/2

^{*} Nuclear isomer = ¹³long-lived excited state

1st studies: Na+/K+ & G-quadruplexes

DNA G-quadruplexes:

- Guanine-rich fragments
- Found in nature, e.g. in telomeres
- > Synthesised for novel applications
- Binding alkali metals

Alkali metals in DNA G-quadruplexes

- > Important for their formation, stability and structural polymorphism
- Until recently considered invisible in conventional Na+/K+ NMR

Aim

- Show whether beta-NMR can address such systems
- Benchmark results to several conventional liquid NMR studies
- Determine binding sites and dynamics of Na+/K+ in different quadruplexes

Summary and outlook

- NMR is a powerful technique but it has a very limited sensitivity
- Hyperpolarization and detection of beta particles can give a billion times increase in NMR sensitivity
- Devoted experimental setup located at ISOLDE-CERN
- Preparing for the first experiments on Na/K and G-guadruplexes
- More chemical elements to be addressed soon

