Fast Timing for Collider Detectors

Chris Tully (Princeton University)

CERN Academic Training Lectures (3/3)

12 May 2017

Outline

- Detector implementations for HL-LHC
- Impact of fast timing on the HL-LHC physics program

Timing around the ring

BTL/ETL

TOF

Signals received per beam:

• F_{rev} a.k.a. "Orbit": 11 kHz

• Bunch clock: 40.079 MHz

TORCH

HGTD

Clock distribution

Clock source distributed around the ring with $\sim 6ps$ jitter (may increase to $\sim 10ps$)

TORCH: Time Of internally Reflected CHerenkov light

Goal: ~15ps/track

with \sim 30 photons/track and \sim 70ps per single photon

 \sim 70ps/ $\sqrt{N} \rightarrow \sim$ 15ps

Particle-flow Event Reconstruction

Hermetic MIP timing layer

Barrel Timing Layer (BTL) LYSO crystals + SiPM Readout

Barrel Timing Layer Module – Redesign from TOFPET

Basis for Design: TOFPET

- → Reduce Crystal thickness to 3mm
- Remove projective cracks with overlapping layers

Tiling Crystals and Projective Cracks

Sensor Module Construction Franzbrötchen

Wrap single crystals with a tile wrapping machine,
AHCAL building a pre-production version for 20k tiles

Pick and place wrapped tiles on SiPM board with a robot 72 tiles / 2.5 hours in AHCAL pre-production, can be accelerated significantly

Sensor Modules Construction a la Milanaise

Tracker Support Tube and Thermal Screen

• Large carbon fiber cylinder – supported on 4 pins with a horizontal rail system to support the silicon trackers (TST at 20 C, Tracker at -20C → thermal screen)

Building Barrel Timing Layer into Track Support Tube

• Use thermal properties of carbon fiber tube with NoMex honeycomb filler to provide thermal screen (-35C inside \rightarrow 20C outside) with active heating on the outer surface \rightarrow run SiPMs at -35C

BTL Construction

~10mm x 10mm area LYSO crystals at R=1200mm \rightarrow Hit occupancy few % at 200PU above 1/2 MIP threshold

36 trays in φ, 72 half trays:

Number of crystals per module: 64

56 Modules per half tray (total 4032)

- Half-Tray length: 2604 mm (56x46.5 mm)
- Half-Tray width: 184.5 mm
- 1 Chip per module, 4 modules per link, 2 fibers per

258048 channels in BTL

- Modules are the unit size for production of boards including crystal mounting.
- Half trays to be assembled from modules and inserted into TST.
- Total crystal weight ~11.2 kg per half tray.

~806 kg crystal weight of BTL

Dark Count Rate (DCR) drops with Temperature

CO₂ Cooling

http://iopscience.iop.org/article/10.1088/ 1748-0221/6/01/C01091/pdf L. Feld, W. Karpinski, J. Merz1 and M. Wlochal

Self-heating of SiPM

- Ultimately, it's the self-heating of the SiPM that limits the LYSO crystal+SiPM to use in the barrel ($<2x10^{14}$ n/cm²)
 - The area is kept small to keep down the Dark Count Rate
 - The thickness of the crystal can vary 3mm → 5mm to increase S/N, but too
 much material will degrade the EM (PbWO) calorimeter

Silicon sensor with gain

- Nominal geometry: 4.8 x 9.6 cm² modules with 1x3 mm² sensors
 - 16 ASICs bump-bonded to sensors
 - 3:1 ganging in the TDC at small η (3x3 mm² granularity)
- Readout ASIC in development
- Single sensor shown to have $\sigma_t \leq 50$ ps up to 10^{15} neq/cm²

Eta	Fluence [10 ¹⁴ n _{eq} /cm²]	Time resolution
1.6	1.1	~ 30 ps
2.0	2.1	~ 30 ps
2.5	4.1	~ 30 ps
2.6	6.5	~ 40 ps
3.0	10	~ 55 ps

LGAD: Strong collaboration across experiments

ATLAS High Granularity Timing Det.

Endcap Timing Layer

Tiled Modules of Silicon Sensors

Decoupling of sensor size (PAD) and readout unit (TDC)

Sensor pad != read-out unit

If not: merge n front-end channels after the discriminator to create a larger mm² read-out unit

Digital summing retains all the benefits of small pads, while allowing for a reduced number of TDCs and read-out channels.

Countering the Anti-Iuminosity effect

Muon and Tau Lepton Charged-Partcle Isolation Efficiencies

Acceptance gain in searches and precision measurements

Higgs $\rightarrow \mu\mu$ & Higgs \rightarrow ZZ \rightarrow 41

Improvement in Higgs yield with Timing

Missing Transverse Energy

- MET Resolution study using $Z \rightarrow \mu\mu$ events
 - PUPPI with track time information [photon timing not yet included]
- ullet MET spectrum: tails reduced by a factor ~ 2
 - Offset [almost entirely] the performance degradation at 200 PU

$H\rightarrow \gamma \gamma$ at HL-LHC

- Calorimeter timing-based triangulation matched to vertex time information
 - Resolve ambiguities of calorimeter timing-based triangulation
 - Simple χ^2 matching: 5X reduction in 'effective pileup'
- $H \rightarrow \gamma \gamma$ at HL-LHC: substantial failure of kinematic vertex identification:
 - $\epsilon(|z_{vtx}-z_{true}|) < 30\%$ at 200 PU (~ 80% in Run I)

Pile-up Jet Suppression

Pileup jets

Signal [generator matched] jets

- Rate suppression from jet cleaning from pileup with timing
 - Key signature for jet tagging
- Efficiency for signal jets unaffected
 - Current baseline: |η|<3 coverage

Secondary Vertex Reconstruction

Time-of-Flight Particle Identification (π/K) up to 2-3 GeV)

ATLAS HGTD proposed location

HGTD cell occupancy

Signal jet in high pileup

L0 timing trigger for mitigation of pile-up Jets based on:

- Identification of cluster of track hits, from the same jet, with time coincidence within a bunch period
- Generation of L0 level trigger (40MHz) containing L0 Time object, to be combined with L0 Calo for a global trigger decision.

Timing of jet core

In-time fraction of cells within a jet

- Count number of in-time cells associated to each jet
 - cells with deltaR<0.05 to nearest cluster in jet
 - signal window = $1 \sigma_T$

Sample with ~2k signal jets

Summary — Lecture 3

• Fast timing has the potential to open up new possibilities for future machines - and it is very exciting to think about where that may lead.

Backup

Unless otherwize stated all dimensions in this drawing represent the limits (envelopes) within which the component/assembly must fit.

For details of the structural parts, see the 3D model ST0579969_03 " CMS TRACKER PHASE 2 UPGRADE "

CMS phase 2 Tracker GEneral Parameters			DRAWN	P. LENOIR	2016-06-1	
CMS PHASE 2 UPGRADE TRACKER ENVELOPES			CONTROLLED			
			RELEASED			
			APPROVED			
			CAD Document Number ST0764001_02			
			REPLACES			
NON VALABLE POUR EXECUTION	QAC	CMCO	TCE	20001	SIZE IN	
NOT VALID FOR EXECUTION	-	UNI02	IGE	70001	131	

BTL Readout ASIC

- TOFPET2 chip seems to meet basic needs for BTL with minor changes needed to match expected SiPM gain and to reduce deadtime through time multiplexing
 - Timewalk correction is critical for TOFPET2, in particular timewalk correction for multiple hits needs to be understood.
 - TOFPET2 plans for submissions requires attention (see comments on schedule)

- Architecture based on TOFPET1
- o 64 channel ASIC (CMOS 110 nm)
- o timing and energy branch per channel
- o dynamic range: configurable 150 to 1500 pC
- o timing branch: amplifier, discriminators and TDC
- energy branch: amplifier, charge integrator and ADC
- o time-over-threshold available
- 4-fold TAC per channel (de-randomization)
- o TDC binning 40 and 20 ps
- o energy measurement: 8 bit, noise ~1 LSB
- o max rate per channel 0.6 M hits/s, limited by output links (3.2 Gb/s)
- power consumption ~5-8 mW/channel

Total power budget for BTL in the range between 12 kW and 18 kW

HGTD Electronics

Services

Each ECAL SM has one patch panel for the distribution of the services (18 per side)

Service trays run out radially from each PP with a pair of adjacent SM trays run together (A/B)

Туре	#(total)	Diameter	
EB-HV	4	21.4	\sim 67% filled (75-85% practical max)
EB-DCS-PTM	1	11	
EB-DCS-ESS	1	7.2	
EB-DCS-HM	1	5.8	
EB-LV-inhi	3	8.3	
EB-LV-sen	1	8.3	~18°C ~ 18°C
EB-trunk	3	9.5 ~50mm	
EB-LV	34	12.2	
EB-sniffer/N2	2	10	0000000000000000
EB-cooling-in flexible	1	41	
EB-cooling-out flexible	1	41	
EB-Mem-Hybrid	1	12	
EB-Mem-Laser	1 per 2 SMs	10	~180mm
EB-earth	1	4.9	18011111

Equalized effective LYSO thickness

eta	Thickness [mm]	Volume [cm2]	Weight [g]	Module count	M _{xtal} per module [g]	
<0.6	3.75	0.54	3.9	1-19	250	4750
0.6 – 1.1	3.0	0.43	3.1	20-35	200	3200
>1.1	2.3	0.33	2.4	36-56	153	3213

crystal weight per tray ~11.2 kg

Impact of Out-Of-Time (OOT) Pile-up and backscatter from ECAL

- At <nPU>=200, probability to have total energy from PU in a cell above 0.1 keV is small (13.3% at eta=0 and 22.8% at eta=1.5)
- Most of the cells are unaffected by "in-time" PU at <nPU>=200 and have zero time jitter
- For typical discrimination thresholds of 20-200 phe contribution to time resolution <8ps

