Timing of long scintillator counters with WLS fiber readout for TOF system

M.Antonova, O. Mineev, S. Suvorov INR RAS, Moscow, Russia

Introduction

TOF system:

- separation of charged particles and directions by time-of-flight in the inner volume of the electromagnetic calorimeter
- Outer TOF layer (close to ECAL) maximum cover about 82 m²
 area
- Provide time resolution σ_{t} close to 0.5 ns

Test features:

- Different scintillator and fibers configurations
- Two types of MPPCs:
 - 3x3 mm²
 - 1x1 mm²
- Various read out configurations

Readout and trigger for cosmic tests

The signal charge: area of signal waveform normalized to photoelectrons **The signal timing:** constant fraction (**0.1**) of a signal front

12-bit resolution

Tested scintillator and fiber configurations

- Reflector: chemical one & Tyvek paper
- Y11 Kuraray multi-clad WLS fibers, 3 m long,1 mm diameter

- 7-mm thick and 15 cm length extruded slabs
- 5 cm between fibers
- Main samples:
 - 4 samples: 5 cm width,1 fiber
 - 2 samples: 10 cm width, 2 fibers
- Other configurations:
 - 15 cm width, 120 cm length ,3 fibers
 - 20 cm width, 120 cm length ,4 fibers
 - 10 cm width, 50 cm length, 4 fibers
 2.5 cm between fibers

MPPCs comparison

3x3 mm² MPPC:

The counter or two counters combined are viewed by a single 3x3 mm² MPPC at each end

Viewed counters	Light yield, ph.e./MIP	Timing σ,	Number of layers
U	88.6	0.84	1
D	88.0	0.76	1
U+D	188	0.60	2

Configuration:

- o 10 cm width counters with 2 fibers
- 3 m long fibers
- Timing is calculated for combination (T_L-T_R)/2

1x1 mm² MPPC:

- All fibers at each end are coupled to individual 1x1 mm² MPPCs
- All MPPCs at one side are connected in parallel.

Viewed counters	Light yield, ph.e./MIP	Timing σ,	Number of layers
U	72.0	0.81	1
D	67.4	0.86	1
U+D	128.3	0.60	2

MPPCs comparison

- 3x3 mm² MPPC provide slightly better light yield over 1x1 mm² MPPC because of higher PDE (larger pixel size)
- The time resolution is almost the same in both cases, the readout by 3x3 mm² MPPC or 1x1 mm² MPPCs connected in parallel

Conclusion: no difference if merge WLS fibers light on a single large MPPC or sum pulses from small MPPCs in parallel

Time resolution vs number of layers

Measurements were done to study how the timing depends on the number of scintillator layers

5/21/2017

3x3 mm² MPPC, 5 cm wide counters

1 layer:

Different counters or combinations of two counters located horizontally (a single layer) are viewed by a single 3x3 mm MPPC at each end

2 layers:	2	layers:
-----------	---	---------

Different combinations of two layers are viewed by a single 3x3 mm MPPC at each end

Viewed	Light yield ph.e./MIP	Timing σ,	Number of layers
1U	80	0.85	1
2U	81	0.84	1
1D	76	0.85	1
2D	83	0.85	1
1U+2U	84	0.87	1
1D+2D	83	0.86	1

Viewed counters	Light yield,	Timing σ,	Number
000-2-20-2	ph.e./MIP		of layers
1U+1D	164	0.63	2
2U+2D	171	0.63	2
1U+1D+ 2U+2D	175	0.64	2

3 m long fibers

 Timing is calculated for combination (T_I -T_R)/2

1x1 mm² MPPC, 4 counters

Individual readout configuration:

All fibers at each end are coupled to an individual 1x1 mm MPPC. Each MPPC is amplified and digitized.

Viewed counters	Light yield, ph.e./MIP	Timing σ, ns	Number of layers
1U	48	0.99	1
2U	64	0.86	1
1D	57	0.87	1
2D	64	0.85	1
1D+2D	122	0.62	2
All 4 layers	233	0.48	4

3 m long fibers

Timing is calculated for combination $(T_L-T_R)/2$

connection
configuration:
All fibers at each
end are coupled
to an individual
1x1 mm MPPC.
All MPPCs at
each side are
connected in
parallel.

Viewed counters	Light yield, ph.e./MIP	Timing σ, ns	Number of layers
2D+2U	126	0.60	2
1D+2D	130	0.57	2
1D+2D+2U	180	0.50	3
All 4 layers	220	0.45	4

3x3 mm² MPPC, 4 counters,

Right Left 3 m long fibers

Timing is calculated for combination

Configuration:

All fiber ends at each side are coupled to a single 3x3 mm MPPC.

Viewed counters	Light yield, ph.e./MIP	Timing σ,	Number of layers
1U+2U	164	0.63	2
10+20	104	0.03	
1D+2D	171	0.63	2
1D+2D+2U	239	0.53	3
All 4 layers	334	0.46	4

 $(T_1 - T_R)/2$

Time resolution vs number of layers comparison

Conclusion: 7-mm thick 3-m long scintillators and Y11 WLS fibers spaced at 5 cm provide the time resolution:

```
\sigma = 800-870 ps with a single layer
```

 σ = 600-630 ps with two layers

 σ = 500-530 ps with three layers

 σ = 450 ps with four layers

Scintillator width comparison

- 3x3 mm² MPPCs readout
- Single MPPC at one end
- WLS fibers: 3-m long Kuraray Y11 of 1 mm diameter
- Fiber spacing: 5 cm
- Scintillator thickness:0.7 mm
- Number of layers: 1

Width	Number of fibers	Timing σ,	Light yield, ph.e./MIP
5 cm	1	0.85	80.0
10 cm	2	0.80	88.3
15 cm	3	0.87	78.6
20 cm	4	0.86	78.1

Fibers comparison: Kuraray Y11 vs BCF-92

- Slow fibers: 3-m long <u>Kuraray Y11</u> multi-clad, 1 mm diameter
- Fast fibers: 3-m long <u>Bicron BCF-92 single-clad</u>, 1 mm diameter
- Light yield is a sum from both ends
- Read out by 3x3 mm² MPPCs
- Single MPPC at one end
- Counters: 0.7x10x50 cm³
- Fiber spacing is 2.5 cm

WLS fiber	Decay time,	Light yield, ph.e./MIP	Timing σ,
Y11 m.c.	~12	~130	~0.75
BCF92 s.c.	~3	37.8	0.80

<u>Conclusion</u>: fast single-clad fibers gives worse timing than slow multi-clad WLS fibers out of low light yield

5/21/2017

Fiber density comparison

- 3-m long Kuraray Y11 multiclad, 1 mm diameter
- 10 cm width counters
- 2 grooves, fiber spacing is 5
 cm
- 4 grooves, fiber spacing is 2.5
 cm
- Read out by 3x3 mm² MPPCs
- Single MPPC at one end

Fiber spacing	Number of layers	Light yield, ph.e./MIP	Timing σ,
5 cm	1	88	0.80
5 cm	2	188	0.60
2.5 cm	1	130	~0.75
2.5 cm	2	~240	~0.55

Conclusion: 2 times more fibers give higher light output but little advantage in timing

Proposed TOF counter conception

- Two scintillator slabs of 0.7x20x270 cm³ size
- 4 WLS Kuraray Y11 fibers of 1 mm diameter are glued in the slab
- 8 WLS fibers are bundled within a scintillator slab at each side of the counter into a connector
- Connector is mounted directly at the scintillator
- Read out by a single 3x3 mm² MPPC at each side
- Expected time resolution σ is 630-650 ps

Conclusion

- No difference if merge WLS fibers light on a single large MPPC or sum pulses from small MPPCs in parallel
- Fast single-clad fibers gives worse timing than slow multi-clad WLS fibers out of low light yield
- 2 times more fibers give higher light output but little advantage in timing
- The best achieved time resolution: 450 ps
 (7-mm thick 3-m long scintillators, Y11 WLS fibers spaced at 5 cm)
- Expected time resolution for proposed configuration:
 σ ≤ 600 ps

Back up

5/21/2017

Introduction

TOF system:

- separation of charged particles and directions by time-of-flight in the inner volume of the electromagnetic calorimeter
- Outer TOF layer must cover about 82 m² area (to the maximum) and provide time resolution σ_t close to 0.5 ns

Fixed parameters for the conceptual design of counters with WLS fiber readout:

1. 3 m long Y11 Kuraray WLS fibers

The best available WLS fibers to obtain the highest light yield which compensates the slow decay time of re-emitting.

2. 7 mm thick extruded scintillator bars.

The established technology in manufacturing of extruded scintillators, proved by time and achieved light yield. Reduced scintillating light fluctuations over scintillator volume.

3. 5 cm spacing between the fibers.

This distance looks like the optimum between the performance and cost of the detector (our feeling based on many tests).

5/21/2017

Specification of tested Hamamatsu MPPCs

Tested photodiodes are of the same generation and similar parameters, the differences are the total sensitive area size and pixel size

S12572-0	50C	S12571-02	25C
· · · · · · · · · · · · · · · · · · ·			

Sensitive area size: 3x3 mm² 1x1 mm²
Number of pixels: 3600 1600

Pixel size: $50x50 \mu m^2$ $25x25 \mu m^2$

Gain: 1.25 x10⁶

Operating voltage: ~ 67.6 V
Peak spectral sensitivity: 450 nm

Dark count (typical): 1000 kHz

Crosstalk: ~ **25** % PDE at 500 nm: ~ **35** %

5.15 x10⁵
~ 68.5 V
450 nm
100 kHz
~ 22 %

~35 %

Tested samples of 10-cm width with 2.5 cm spaced grooves

- 10-cm wide counters with 25 mm fiber spacing
- Twice more fibers
- Scintillator size: 0.7x10x50 cm³
- Reflector: chemical+Tyvek

Tested samples of 15- and 20-cm width

- Two slabs were manufactured:
 - 0.7x15x120 cm³ with 3 grooves
 - 0.7x20x120 cm³ with 4 grooves
- WLS Y11 fibers of 3 m length
- Readout with 3x3 mm² MPPCs
- Single MPPC at one scintillator end

Spectra for parallel connection of 4 MPPCs

Digitized signal waveforms

Spectra for the 20-cm wide slab

A single scintillator slab of 0.7x20x120 cm³ size with 4 WLS 3-m long fibers. Cosmic muons spectra were obtained over the center line across the slab.

Light yield at both ends: 39.5 and 38.6 p.e./MIP

Timing spectrum $(T_{LEFT}-T_{RIGHT})/2$ Resolution: $\sigma_{T}=0.86$ ns

Tests with 1 mm MPPCs

- Optical connectors for 1 mm MPPCs were glued on fibers in the same tested counters
- Measurements were repeated with MPPCs connected in parallel

Fibers comparison: Kuraray Y11 vs BCF-92

- A few 10-cm wide counters were manufactured with 25 mm fiber spacing
- Twice more fibers
- WLS fibers:
 - 3-m long Kuraray Y11 of 1 mm diameter
 - 3-m long fast BCF-92 WLS fibers of 1 mm diameter
- Scintillator size: 0.7x10x50 cm³.
- Reflector: chemical+Tyvek
- 3x3 mm² MPPC

5/21/2017

Number of TOF channels for the outer level

- TOF outer layers are mounted at the inner surface of e-m. calorimeter. Simplified picture combines both inner barrel and POD parts of e.-m. calorimeter
- Total size is about 2.6 x 2.8 x 6.3 m³

Estimation to the max coverage:

Length of sci. slabs: 260-270 cm Width of sci. slabs: 20 cm Two slabs per a TOF counter, both side readout

Number of TOF counters: 152 Number of readout ch.: 304

Number of sci. slabs: 304 Total sci. weight: ~1300 kg Number of 3x3 mm² MPPCs: 304

WLS fiber length: 3.6 km

Number of channels in TOF inner layer around the active target is more difficult to estimate and depends on the configuration of the active target and TOF counters