T2K-SK Systematic Uncertainties

3rd Workshop on Neutrino Near Detectors based on gas TPCs 20th May

> James Imber LLR – Ecole Polytechnique

T2K-SK Systematic Uncertainties

- Current Status
 - Selected Methods
 - Near-term prospects

- Future developments
 - T2K systematics in the SK-Gd Era

Current Status

- Uncertainties updated in 2017 for new far detector event selection
- Uncertainty related to observing particles propagating through the tank
 - → Final state topology (FS)
- "Top-down" approach constrain each FS with equivalent non-beam data compared with MC
- Uncertainty from each selection criteria
- ToyMC to combine errors and convert format for OA group

Atmospheric Neutrinos

- Allow distortions (shift, smear) of atmospheric neutrino MC distributions by FS and region in (towall, wall) space
- Distributions in log-likelihood ratio for different hypotheses (e.g. e-like vs. μ-like)
- Samples divided into
 N_{decay-e} = 0, 1, 2+
 to emphasise different components

0 decay electrons

1 decay electrons

2+ decay electrons

Atm. Fit Results

Fit using differential evolution MCMC

Use MCMC chain to extract fractional uncertainty on FS modes with

covariance using T2KMC

Cosmic-Ray Muons

- Decay electron tagging
 - Reweight MC to match T2KMC distributions in momentum and towall

Tagging efficiency

Fake detection

Hybrid- π^0 samples

 Single ring events combined (data+MC, MC+MC) to match kinematics of two-ring pi0 events in the T2K MC

- Repeated for MC-data comparison of higher energy ring and lower energy ring
- Pass all samples through v_e event selection

Hybrid- π^0 – NC π^0 sample

 Uncertainty from fractional difference in remaining efficiency between data and MC

A: p < 300 MeV

B: 300 MeV < p < 700 MeV

C: 700 MeV < p < 1250 MeV

Changes for 2017

- fiTQun based selection has reduced sample backgrounds with large uncertainties
- Using shape of distributions has reduced "fit" derived uncertainty in atm-nu fit
- CCeOth, error has increased
- Vertex position uncertainty reduced

Total error by sample

*NOT totally fair comparison, change will be smaller than it appears!

Sample	2016 % error	2017 % error
nue CCQE	4.4*	2.9
numu CCQE	4.2	2.2
nuebar CCQE	4.7*	3.7
numubar CCQE	3.5	1.8
nue CC1pi	18.4*	17.2

Near Future Improvements

- Consider "limiting uncertainty"
- Additional Atm. samples to help reduce shift/smear parameter degeneracies in the fit (eg. π^0 enhanced sample)
- Unify Cross section
 - Atmospheric fit marginalises over cross-section parameters
 - Apply T2K cross-section uncertainties and propagate covariance
 - Natural path to full SK + T2K oscillation analysis

T2K Oscillation Analysis Overview

T2K Oscillation Analysis Overview

SK Uncertainties with Gadolinium

Gadolinium Doping

Neutron Capture → Delayed Coincidence

Gd in Super-Kamiokande

- 0.1% Gd loading (0.2% Gd₂(SO₄)₃) gives ~90% efficiency for neutron capture
- For Super-K this means dissolving 200 tonnes of $Gd_2(SO_4)_3$
- For T2K
 - v/\bar{v} separation
 - Energy reconstruction
 - Neutrino interaction1p1h vs. 2p2h

Uncertainties with SK-Gd

- New event selections
- No large atmospheric/cosmic samples available
- Switch to "bottom-up" approach
- Uncertainties derived from set of fundamental detector tuning parameters in the simulation
 - Scattering, absorption, material properties
- T2K MC with Gd is in development
 - Now: n-tagging and pure water quality shortly
 - Next: Studies with n-tagging and modified water quality
 - requires retuning of APFit and fiTQun

EGADS

- Evaluating Gadolinium's Action on Detector Systems
- 200tn Water Cherenkov detector SK in miniature
- Designed to test all aspects of Gd loading, long term and under experimental conditions
 - Water transparency
 - Detector material resistance
 - Selective filtration system

EGADS Water Quality

EGADS Water Quality

Summary

- A lot of work went into producing errors for the new event selection
- Further improvements possible

- A number of developments are in the pipeline
 - Near term: How we use the existing uncertainties
 - Longer term: Development of new methods

Supplementary

EGADS

Cosmic-Ray Muons

- Vertex resolution
 - Compare wall distribution of data and MC

2.5 cm difference in resolution

Apply +2.5 and -2.5 cm shift to MC

 $\Delta N \sim 0.5\%$