

Possible contribution of IFJ PAN

Marcela Batkiewicz, Jerzy Michalowski, Jacek Swierblewski

Existing Time Projection Chamber

Existing Endplate & Module Frame

Dummy modules assembly

Courtesy: NSERC Review 2008 D. Karlen / U. Victoria & TRIUMF representing the T2K ND280 TPC group

Proposed Endplate & Module Frame

Carbon fiber

(conductive material)

Note:

to keep the current design, the carbon fiber frames have to be isolated from high voltage.

A possible solution is to combine a copper clad G10 layer with the carbon fiber frames

First prototype of carbon fiber module frame (0.8m x 0.6m x 0.015m)

Examples of carbon composite applications

LHCb Experiment - panels for Outer Tracker Detector (5m \times 0.5m \times 0.01m)

November 2003

Cooper clad kapton

Rohacell foam

Carbon fiber tissue

Vacuum pump

Examples of carbon composite applications

Experiment PHOBOS at RHIC, Brookhaven National Laboratory, USA 1993 - 2000

Mechanical structures

- •R&D
- Prototyping
- Design
- FEM calculation
- Fabrication
- Assembly

Carbon-epoxy base plate and aluminum cooling frames for silicon detectors of two-arm spectrometer(left), their ANSYS model(center) and calculated vertical displacements of the base plate(right)

Carbon-Epoxy Composite Base Plates for the PHOBOS Spectrometer Arms

Funding

IFJ PAN got a funding for 2017 and 2018 for a design and prototyping (21k euro for materials) of TPC end-plates and support structures for MicroMegas and FE cards.

Funding application for a proper (non-prototype) structures will be written in 2018.