Scintillator-based trackers

Masashi Yokoyama Department of Physics, University of Tokyo

Important design choices: 2

- 6 scintillator-based detectors considered for the active target(s): FGD-like, 3D FGD, Super-FGD, Wagasci-like, Empty Wagasci, Scintillating fibers
- For the alternative configuration, the horizontal target could be totally active (Carbon only)
- Apart from the technology, other design choices for the target (granularity, bars geometry etc) need to be addressed
- Performances should include: efficiency for short hadronic tracks (includes high angle tracks), PID, gamma/nue, Michel electrons

Objectives of target detector(s)

- Provide target mass for neutrino interaction
 - Especially important for Ve measurement
 - Water target necessary or not?
- Acceptance for large angle tracks
- Reconstruct tracks inside the target detector
- Background reduction/control for Ve measurement

Need to be quantitively defined in terms of physics requirements, with consideration of the detector design

Extruded scintillator

- Can produce large amount with relatively low cost
- Ingredients are heated to be melt and extruded through a die
 - Co-extrusion with a reflector layer (w/TiO₂) possible
 - Hole/groove for a fiber can be shaped at extrusion
- Mechanical dimension difficult to precisely control
 - Shrinkage during cooling after extrusion

die for extrusion of WAGASCI scintillator

Examples

SciBar: 2.5×1.3cm² with a hole in center, Fermilab

MINOS, 4×1cm² groove, NICADD/Fermilab

FGD,

Made in Canada based on Fermilab recepi

MINERVA, POD Fermilab

WAGASCI, 2.5×0.3cm² Fermilab

Example cost (Fermilab case)

- Cost estimate in Jan. 2015
 - \$56k for <u>0.3×2.5cm²</u>, (WAGASCI type) 6,000m
 - \$21k material, \$35k labor
 - \$79k for <u>1.0×5.0cm²</u>, (INGRID type) 3,000m
 - \$44k material, \$35k labor
- New die for WAGASCI costed ~\$55k including test production

Wavelength shifting fibers

Kuraray Y I I is commonly used

Trapping efficiency is a few %

Dimensions available 0.2mm - 2.0mm (0.2, 0.5, 1.0, 1.5, 2.0 typ.)

Photo-sensors

- Assume to use MPPCs
 - Excellent performance in the current ND280
 - Improved version available
- Need to define package and optical connection
- Typical cost ~2,000JPY/channel

Electronics

- Current FGD uses the same electronics with TPC
 - Independent system or identical to HTPC?
- Important to have decay-e tagging capability
 - Consideration on dead time requirement
- Timing synchronization with other detectors

Sub-WorkPackages (preliminary)

- Definition of detector configuration [with simulation/physics]
 - Water target necessary?
 - WAGASCI-like? FGD-like? Else?
- Plastic scintillator
- WLS fibers
- Photosensors (MPPC)
- Mechanical structure [with WPI]
- [Water system (if necessary)]
- Electronics (frontend, backend)
- Monitoring system

WP6 group status

- Currently Japanese institutes + possibly LLR
- We need more people to cover all items
- More groups are necessary! your contribution is welcome, for any of items

Detector options

- Considering the timeline to write the proposal within by October, we need to define a "baseline" with robust and feasible design
 - With "alternative" options that need to be studied

- In my opinion, 3D-FGD (and FGD-like) seems one of feasible options from construction view point, but not much studied so far
 - Can we have a performance study?

Backup

Scintillator performance

Light yield measurement with WAGASCI scintillator (2014)

Position dependence

- Also observed significant cross-talk:
 - Improved version (fraction of TiO₂ increased) just delivered.
 To be tested soon