MC production for FCC-hh physics Michele Selvaggi, Clement Helsens CERN # Outline - Status and plans - Discussion on generation of specific processes (DY, γγ) # **GridPacks** - GridPack Producer⁽¹⁾ - makes MG5_aMC@NLO GridPacks (i.e standalone program that produces LHE files) - Can be used either locally or on lxbatch/condor queues ./run.sh [nevents] [seed] For simplicity, GP that are of common interest have been produced centrally and stored here: /eos/fcc/hh/generation/mg5_amcatnlo/gridpacks https://github.com/selvaggi/GridPackProducer # GridPacks #### All "HT-binned" and "inclusive" gridpacks have been produced! /eos/fcc/hh/generation/mg5_amcatnlo/gridpacks/ 123 gridpacks in total 87 binned in HT -> 36 different processes Selvaggi - Sample Production # Les Houches Events #### Clement Helsens ## LHE Producer⁽¹⁾ - Produces Les Houches Event (LHE) files using GridPacks using Ixbatch queues (working on extending to HTCondor) - Procedure has been made more robust to allow multiple users - · Comprehensive list of generated events can be found here: http://fcc-physics-events.web.cern.ch/fcc-physics-events/LHEevents.php ## /eos/fcc/hh/generation/mg5_amcatnlo/lhe - With the intent of covering a large spectrum of processes, mostly inclusive samples have been generated but HT binned on the way - More than 440M events generated so far! https://github.com/clementhelsens/EventProducer # Pythia/Delphes events ## Clement Helsens - FCCSW Producer⁽¹⁾ (NEW!) - Runs FCCSW (Pythia8+Delphes) on LHE files using lxbatch queues - produces FCCSW n-tuples that can be analysed with Heppy ## /eos/fcc/hh/generation/DelphesEvent/v0_0/ - With the intent of covering a large spectrum of processes, mostly inclusive samples have been generated so far - More than 100M events generated! https://github.com/clementhelsens/EventProducer ## **Plans** - Heavy resonances boosted topologies studies require sufficient statistics in the tails - → we need to start generating HT binned samples - With the exception of few loop-induced processes (i.e gg \rightarrow H, gg \rightarrow HH, gg \rightarrow YY), LHE generation can be performed pretty fast - I0 M events can be generated in ~2-3 hrs (with 1k jobs) - There are ~20 processes and ~5 HT bins per process - → 300 hrs for producing LHE - → 300 hrs for Pythia+ Delphes (FCCSW) - If production shared among 2-3 people, and no major show-stoppers most of the event production should be ready by the FCC week (this includes all background + Higgs) - As a starting point will use the same LHE events to be decayed differently (wrong if we combine analyses channels) # Note on Drell-Yan - At m_{||} far from m_Z, i.e |m m_Z| > $15*\Gamma_Z$: - pp_v0123j_5f can be used alone - In the vicinity of m_{Z:} - the sum of the two should be used! - \rightarrow very important for Higgs studies (H \rightarrow $\mu\mu$) - Same approach used for: - pp_llv01j_5f and pp_vv012j_5f (di-boson) - pp_tt012j and pp_tv012j_5f (ttbar/single top) # Bkgs for $H\rightarrow yy$ (new) ## contributions @ 100 TeV: - I) g g $\rightarrow \gamma \gamma$ (loop induced) + 0/1 jets - $\sigma (m \gamma \gamma > 50 \text{ GeV}) = 490 \text{ pb}$ - 2) p p $\rightarrow \gamma \gamma$ (tree-level) + 0/1/2 jets - $\sigma (m \gamma \gamma > 50 \text{ GeV}) = 2150 \text{ pb}$ - → neglecting qg / qq virtuals - 3) $p p \rightarrow y j$ (tree-level) + 0/1/2 jets (single-fake - I) gg_aa0 I j_5f - on /eos: 2) pp_aa012j_5f - 3) pp_aj012j_5f # Conclusions - Gridpack production is DONE for common backgrounds and Higgs - almost all inclusive Les Houches event samples have been generated and stored on /eos/ - Large scale HT-binned sample production will start very soon - Add more processes (ttHH, tttt, VVVV, etc..)