MC production for FCC-hh physics

Michele Selvaggi, Clement Helsens
CERN

Outline

- Status and plans
- Discussion on generation of specific processes (DY, γγ)

GridPacks

- GridPack Producer⁽¹⁾
 - makes MG5_aMC@NLO GridPacks (i.e standalone program that produces LHE files)
 - Can be used either locally or on lxbatch/condor queues

./run.sh [nevents] [seed]

 For simplicity, GP that are of common interest have been produced centrally and stored here:

/eos/fcc/hh/generation/mg5_amcatnlo/gridpacks

https://github.com/selvaggi/GridPackProducer

GridPacks

All "HT-binned" and "inclusive" gridpacks have been produced!

/eos/fcc/hh/generation/mg5_amcatnlo/gridpacks/
123 gridpacks in total
87 binned in HT -> 36 different processes

Selvaggi - Sample Production

Les Houches Events

Clement Helsens

LHE Producer⁽¹⁾

- Produces Les Houches Event (LHE) files using GridPacks using Ixbatch queues (working on extending to HTCondor)
- Procedure has been made more robust to allow multiple users
- · Comprehensive list of generated events can be found here:

http://fcc-physics-events.web.cern.ch/fcc-physics-events/LHEevents.php

/eos/fcc/hh/generation/mg5_amcatnlo/lhe

- With the intent of covering a large spectrum of processes, mostly inclusive samples have been generated but HT binned on the way
- More than 440M events generated so far!

https://github.com/clementhelsens/EventProducer

Pythia/Delphes events

Clement Helsens

- FCCSW Producer⁽¹⁾ (NEW!)
 - Runs FCCSW (Pythia8+Delphes) on LHE files using lxbatch queues
 - produces FCCSW n-tuples that can be analysed with Heppy

/eos/fcc/hh/generation/DelphesEvent/v0_0/

- With the intent of covering a large spectrum of processes, mostly inclusive samples have been generated so far
- More than 100M events generated!

https://github.com/clementhelsens/EventProducer

Plans

- Heavy resonances boosted topologies studies require sufficient statistics in the tails
 - → we need to start generating HT binned samples
- With the exception of few loop-induced processes (i.e gg \rightarrow H, gg \rightarrow HH, gg \rightarrow YY), LHE generation can be performed pretty fast
- I0 M events can be generated in ~2-3 hrs (with 1k jobs)
- There are ~20 processes and ~5 HT bins per process
 - → 300 hrs for producing LHE
 - → 300 hrs for Pythia+ Delphes (FCCSW)
- If production shared among 2-3 people, and no major show-stoppers most of the event production should be ready by the FCC week (this includes all background + Higgs)
- As a starting point will use the same LHE events to be decayed differently (wrong if we combine analyses channels)

Note on Drell-Yan

- At m_{||} far from m_Z, i.e |m m_Z| > $15*\Gamma_Z$:
 - pp_v0123j_5f can be used alone
- In the vicinity of m_{Z:}
 - the sum of the two should be used!
- \rightarrow very important for Higgs studies (H \rightarrow $\mu\mu$)
- Same approach used for:
 - pp_llv01j_5f and pp_vv012j_5f (di-boson)
 - pp_tt012j and pp_tv012j_5f (ttbar/single top)

Bkgs for $H\rightarrow yy$ (new)

contributions @ 100 TeV:

- I) g g $\rightarrow \gamma \gamma$ (loop induced) + 0/1 jets
 - $\sigma (m \gamma \gamma > 50 \text{ GeV}) = 490 \text{ pb}$
- 2) p p $\rightarrow \gamma \gamma$ (tree-level) + 0/1/2 jets
 - $\sigma (m \gamma \gamma > 50 \text{ GeV}) = 2150 \text{ pb}$
 - → neglecting qg / qq virtuals
- 3) $p p \rightarrow y j$ (tree-level) + 0/1/2 jets (single-fake
 - I) gg_aa0 I j_5f
 - on /eos: 2) pp_aa012j_5f
 - 3) pp_aj012j_5f

Conclusions

- Gridpack production is DONE for common backgrounds and Higgs
- almost all inclusive Les Houches event samples have been generated and stored on /eos/
- Large scale HT-binned sample production will start very soon
- Add more processes (ttHH, tttt, VVVV, etc..)