On the QED effects on R_K and R_{K^*}

Marzia Bordone
1605.07633 in collaboration with G.Isidori and A.Pattoni
Universität Zürich

CERN, 18.5.2017
R_K and R_{K^*} within the SM

Which are the sources of LFUV contributions to $R_{K(\ast)}$ in the SM?

- kinematics and form factor effects $\sim \frac{m_l^2}{q^2}$
- naive estimation of QED corrections $\sim \frac{\alpha}{\pi} \log^2 \left(\frac{m^2_l}{q^2} \right)$
- interplay between kinematic effects and QED corrections

Can we trust the $\mathcal{O}(10^{-3}/10^{-4})$ uncertainties that are quoted in the literature?

semi-analytic calculation of radiative corrections
Calculation setup for the region $q^2 \in [1, 6] \text{ GeV}^2$

- $B \to K^* \ell \ell(\gamma)$ and $B \to K \ell \ell(\gamma)$ decays can be treated in complete analogy (NB: real+virtual QED effects \Rightarrow IR safe observables)

- limit $m_\ell^2 \ll q^2$

- interested to extract log-enhanced terms $\sim \frac{\alpha}{\pi} \log \left(\frac{m_\ell^2}{q^2} \right)$ and $\sim \frac{\alpha}{\pi} \log^2 \left(\frac{m_\ell^2}{q^2} \right)$
 - since they depend on m_ℓ they can be the only terms responsible of LFU violation
 - can be extracted from term associated with collinear and soft divergences due to the photon emission

- neglect $\mathcal{O}(\alpha/\pi)$ finite corrections ($\sim 0.2\%$)

- radiation from meson leg is negligible (not log-enhanced)
Calculation setup for the region $q^2 \in [1, 6] \text{ GeV}^2$

- $B \to K^* \ell\ell(\gamma)$ and $B \to K \ell\ell(\gamma)$ decays can be treated in complete analogy (NB: real + virtual QED effects \Rightarrow IR safe observables)

- limit $m^2_\ell \ll q^2$

- interested to extract log-enhanced terms $\sim \frac{\alpha}{\pi} \log \left(\frac{m^2_\ell}{q^2} \right)$ and $\sim \frac{\alpha}{\pi} \log^2 \left(\frac{m^2_\ell}{q^2} \right)$
 - since they depend on m_ℓ they can be the only terms responsible of LFU violation
 - can be extracted from term associated with collinear and soft divergences due to the photon emission

- neglect $\mathcal{O}(\alpha/\pi)$ finite corrections ($\sim 0.2\%$)

- radiation from meson leg is negligible (not log-enhanced)

Main purpose: understand if QED effects are correctly taken in account in the experimental analysis + estimate residual th. error due to unknown finite corrections
Radiator function

\(\omega(x, x_\ell) \): probability density function that a dilepton system retains a fraction \(\sqrt{x} \) of its original invariant mass \(q_0^2 \) after bremsstrahlung

\[
\omega(x, x_\ell, \theta_K) = \omega_1(x, x_\ell, \theta_K) \theta(1 - x - x_*) + \omega_2(x, x_\ell, x_*) \delta(1 - x)
\]

- \(\omega_1 \): real emission
- \(x = q^2/q_0^2 \)
- \(x_\ell = m_\ell^2/q_0^2 \)
- \(x_* \): IR regulator
- \(\theta_K \): angle between \(K^{(*)} \) and the photon
Radiator function

\(\omega(x, x_\ell) \): probability density function that a dilepton system retains a fraction \(\sqrt{x} \) of its original invariant mass \(q_0^2 \) after bremsstrahlung

\[
\omega(x, x_\ell, \theta_K) = \omega_1(x, x_\ell, \theta_K)\theta(1 - x - x_*) + \omega_2(x, x_\ell, x_*)\delta(1 - x)
\]

- \(\omega_1 \): real emission
- \(\omega_2 \): soft emission and virtual corrections, obtained from
 \[
 \int_{-1}^{1} d\cos \theta_K \int_{2x_\ell}^{1} dx \, \omega(x, x_\ell, \theta_K) = 1 + \mathcal{O}\left(\frac{\alpha}{\pi} \right)
 \]
- \(x = q^2 / q_0^2 \)
- \(x_\ell = m_\ell^2 / q_0^2 \)
- \(x_* \): IR regulator
- \(\theta_K \): angle between \(K^{(*)} \) and the photon
Implementation of the radiator into the non radiative spectrum

Double-differential decay width

\[\frac{d^2 \Gamma}{dq_0^2 dx} (B \to K\ell\ell(\gamma)) = \mathcal{F}^{(0)}_K(q_0^2) \omega(x, x_\ell, \theta_K) \]

\(\mathcal{F}^{(0)}_K(q^2) \): non radiative spectrum of the decay \(B \to K\ell\ell \)

To obtain the radiative-spectrum we need to perform the following convolution

\[\mathcal{F}^{\ell}_K(q^2) = \int_{q^2}^{q_0^2, \text{max}} dq_0^2 \frac{dq_0^2}{q_0^2} \mathcal{F}^{(0)}_K(q_0^2) \omega \left(\frac{q^2}{q_0^2}, \frac{2m_\ell^2}{q_0^2}, \theta_K \right) \]

where the kinematical region of integration depends on experimental cuts, namely \(m_B^{\text{rec}} \)
Modelling the J/Ψ

Non-perturbative spectrum

$$C_9(q^2) = C_9^{\text{pert}} + \kappa_\Psi \frac{q^2}{q^2 - m_\Psi^2 + im_\Psi \Gamma_\Psi}$$

- C_9^{pert} ensures the behaviour at low q^2 region
- BW reproduces the presence of J/Ψ, κ_Ψ normalised to $\mathcal{B}(B \to K^{(*)} J/\Psi)$
- relative phase between C_9^{pert} and BW doesn’t affect the result
- we do not claim this is the "true" shape of the resonance, but still it is suitable toy to study the behaviour around the J/Ψ
- interference not included in PHOTOS-based models
J/Ψ tail

m^rec_B: reconstructed mass of the B meson from charged tracks

- **Key-variable**: m^rec_B, that determines the size of the effect of radiation we need to take in account.
J/Ψ tail

m_{B}^{rec}: reconstructed mass of the B meson from charged tracks

- **Key-variable**: m_{B}^{rec}, that determines the size of the effect of radiation we need to take in account

- even with the looser cut $m_{B}^{\text{rec}} = 4.880$ GeV the tail is safely above the interesting region $[1, 6]$ GeV2
\(B \rightarrow K\ell\ell(\gamma) \) for \(1 \text{ GeV}^2 \leq q^2 \leq 6 \text{ GeV}^2 \)

\[
\begin{array}{c|cc}
\hline
\text{\(m_B^{\text{rec}} \)} & \ell = e & \ell = \mu \\
\hline
4.880 \text{ GeV} & -7.60\% & -1.8\% \\
5.175 \text{ GeV} & -16.9\% & -4.6\% \\
\hline
\end{array}
\]

- radiative correction can be sizable
$B \rightarrow K\ell\ell(\gamma)$ for $1 \text{ GeV}^2 \leq q^2 \leq 6 \text{ GeV}^2$

<table>
<thead>
<tr>
<th>m_B^{rec}</th>
<th>$\ell = e$</th>
<th>$\ell = \mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.880 GeV</td>
<td>$-7.60%$</td>
<td>$-1.8%$</td>
</tr>
<tr>
<td>5.175 GeV</td>
<td>$-16.9%$</td>
<td>$-4.6%$</td>
</tr>
</tbody>
</table>

- radiative correction can be sizable
- due to the cuts applied in the analysis the overall effect is less important
$B \to K\ell\ell(\gamma)$ for $1 \text{ GeV}^2 \leq q^2 \leq 6 \text{ GeV}^2$

- The estimate effect on R_K is: $\Delta R_K = 3\%$
- The effect is the same for R_{K^*}
- Most important, we are in agreement at the $\%$ level with PHOTOS-based signal model
- The shift has already been taken into account in the analysis
- We associate a conservative error of ± 0.01

<table>
<thead>
<tr>
<th>m_B^{rec}</th>
<th>$\ell = e$</th>
<th>$\ell = \mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.880 GeV</td>
<td>$-7.60%$</td>
<td>$-1.8%$</td>
</tr>
<tr>
<td>5.175 GeV</td>
<td>$-16.9%$</td>
<td>$-4.6%$</td>
</tr>
</tbody>
</table>

- Radiative correction can be sizable
- Due to the cuts applied in the analysis the overall effect is less important
$q^2 \leq 1 \text{ GeV}^2$

1. Kinematic effect are non universal for electron and muons and they may cause distortion
 - the radiator for QED corrections must include the complete mass dependence
 - the error due to the form factors is not negligible

2. Light-quark resonances (η, f_0, \ldots) provide non-bremsstrahlung terms not included in PHOTOS-based signal model
\[q^2 \leq 1 \text{ GeV}^2 \]

1. Kinematic effect are non universal for electron and muons and they may cause distortion
 - the radiator for QED corrections must include the complete mass dependence
 - the error due to the form factors is not negligible

2. Light-quark resonances (\(\eta, f_0, \ldots \)) provide non-bremsstrahlung terms not included in PHOTOS-based signal model

Main results:
- The theory uncertainty on \(R_{K^*} \) increases to a few %
- \(\mathcal{O}(1\%) \) negative shift in \(R_{K^*} \)
Non-bremsstrahlung effects

- The radiative tails is modified by the non-bremsstrahlung (direct emission) terms
- The effect is enhanced for the electron, due to kinematic effects and the cuts on m_{B}^{rec}
- Potentially sizeable effects due to

$$\mathcal{B}(B \rightarrow K^* \eta(\rightarrow e^+ e^- \gamma)) \sim 30\% \mathcal{B}(B \rightarrow K^* e^+ e^-, q^2 < 0.1 \text{ GeV}^2)$$
The η case

Given the cuts on q^2 we estimate a shift of $\Delta R_{K^*} \sim -0.017$ to which we assign an error of $\mathcal{O}(100\%)$

$$R_{K^*}[0.045, 1.1]^{SM} = 0.906 \pm 0.020_{\text{QED}} \pm 0.020_{\text{FF}}$$
Non-bremsstrahlung effects

- The non-bremsstrahlung effects lead to a non-vanishing contribution to R_{K^*} only near the threshold.
- If we look at the region $q^2 > 0.1 \text{ GeV}^2$ all these effects are negligible, and

$$R_{K^*}[0.1, 1.1]^{SM} = 0.983 \pm 0.010_{\text{QED}} \pm 0.010_{\text{FF}}$$

We recommend for future analysis to take in account the $q^2 \in [0.1, 1.1] \text{ GeV}^2$.
Summary

- In the central region $q^2 \in [1.1, 6]$ GeV2
 \[R_{K^*} = 1.00 \pm 0.01 \]
 where the uncertainty is driven by QED corrections

- In the $q^2 \in [0.045, 1.1]$ GeV2 region
 \[R_{K^*} = 0.91 \pm 0.03 \]
 where the central value is shifted by the presence of non-bremsstrahlung contribution due to light resonances and the uncertainty is due to QED and non vanishing form factor effects