$u^{\scriptscriptstyle b}$

GLOBAL FITS and CHARM

6 UNIVERSITÄT BERN

Javier Virto

Universität Bern

Instant workshop on B anomalies, CERN – May 18, 2017

Based on :

Descotes-Genon, Matias, Virto, 1307.5683 [hep-ph] Descotes-Genon, Hofer, Matias, Virto, 1510.04239 [hep-ph] Capdevila, Crivellin, Descotes-Genon, Matias, Virto, 1704.05672 [hep-ph]

Bobeth, Chrzaszcz, van Dyk, Virto, 1?xx.xxxxx [hep-ph]

1. GLOBAL FITS

Descotes-Genon, Matias, Virto, 1307.5683 [hep-ph] Descotes-Genon, Hofer, Matias, Virto, 1510.04239 [hep-ph] Capdevila, Crivellin, Descotes-Genon, Matias, Virto, 1704.05672 [hep-ph]

Javier Virto (Uni Bern) $b \rightarrow s$ Transition

 $b \rightarrow s$ Transitions : NP Fits and Hadronic effects

May 18, 2017 2 / 33

:: Anomalies in $b \rightarrow s$ Transitions

Most prominent deviations (out of \sim 170 observables):

Observable	Experiment	Standard Model	Pull (σ)
$\langle P_5' angle_{[4,6]}$	-0.30 ± 0.16	-0.82 ± 0.08	-2.9
$\langle P_5' angle_{[6,8]}$	-0.51 ± 0.12	-0.94 ± 0.08	-2.9
$R_{\kappa}^{[1,6]}$	$0.745\substack{+0.097\\-0.082}$	1.00 ± 0.01	+2.6
$R_{K^*}^{[0.045,1.1]}$	$0.66\substack{+0.113\\-0.074}$	$\textbf{0.92}\pm\textbf{0.02}$	+2.3
$R_{K^*}^{[1.1,6]}$	$0.685\substack{+0.122\\-0.083}$	1.00 ± 0.01	+2.6
$\mathcal{B}^{[2,5]}_{B_s o \phi \mu^+ \mu^-}$	0.77 ± 0.14	1.55 ± 0.33	+2.2
$\mathcal{B}^{[5,8]}_{B_{\mathrm{s}} ightarrow\phi\mu^{+}\mu^{-}}$	$\textbf{0.96} \pm \textbf{0.15}$	1.88 ± 0.39	+2.2

Questions:

- 1. Are these anomalies just "statistics"?
- 2. If not: Do these anomalies make sense?
- 3. If yes: What do we learn from them?

:: We need Global Fits

- Q On 175 observables one expects several 2-sigma deviations. Is this what is happening here?
- A Not very likely, since p-value(SM) $\simeq 15\%$
- Q Is a bad SM fit an indication of New Physics?
- A Not necessarily.

It could be an indication that measurements and/or predictions are "wrong". We need an alternative hypothesis that fits well.

- Q I will only be convinced if one observable deviates 5σ , not by adding 2-sigma tensions.
- A On the contrary! (It would probably not make sense anyway).

Shopping list:

- ► A poor SM fit
- ▶ At least one "BSM" scenario with a good fit
- ► A large SM pull in the comparison of BSM to SM.

:: Effective Theory for $b \rightarrow s$ Transitions

For $\Lambda_{\rm EW}, \Lambda_{\rm NP} \gg M_B$: General model-independent parametrization of NP :

$$\mathcal{L}_{W} = \mathcal{L}_{QCD} + \mathcal{L}_{QED} + \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{\star} \sum_{i} C_{i}(\mu) \mathcal{O}_{i}(\mu)$$

$$\mathcal{O}_{1} = (\bar{c}\gamma_{\mu}P_{L}b)(\bar{s}\gamma^{\mu}P_{L}c) \qquad \mathcal{O}_{2} = (\bar{c}\gamma_{\mu}P_{L}T^{*}b)(\bar{s}\gamma^{\mu}P_{L}T^{*}c)$$

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}}m_{b}(\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu} \qquad \mathcal{O}_{7'} = \frac{e}{16\pi^{2}}m_{b}(\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu}$$

$$\mathcal{O}_{9\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) \qquad \mathcal{O}_{9'\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$$

$$\mathcal{O}_{10\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \qquad \mathcal{O}_{10'\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$$

SM contributions to $C_i(\mu_b)$ known to NNLL Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06

 $\mathcal{C}_{7\mathrm{eff}}^{\mathrm{SM}} = -0.3, \ \mathcal{C}_9^{\mathrm{SM}} = 4.1, \ \mathcal{C}_{10}^{\mathrm{SM}} = -4.3, \ \mathcal{C}_1^{\mathrm{SM}} = 1.1, \ \mathcal{C}_2^{\mathrm{SM}} = -0.4, \ \mathcal{C}_{\mathrm{rest}}^{\mathrm{SM}} \lesssim 10^{-2}$

Javier Virto (Uni Bern)

:: Effective Theory for $b \rightarrow s$ Transitions

For $\Lambda_{\rm EW}, \Lambda_{\rm NP} \gg M_B$: General model-independent parametrization of NP :

$$\mathcal{L}_{W} = \mathcal{L}_{QCD} + \mathcal{L}_{QED} + \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \sum_{i} C_{i}(\mu) \mathcal{O}_{i}(\mu)$$

$$\mathcal{O}_{1} = (\bar{c}\gamma_{\mu}P_{L}b)(\bar{s}\gamma^{\mu}P_{L}c) \qquad \qquad \mathcal{O}_{2} = (\bar{c}\gamma_{\mu}P_{L}T^{*}b)(\bar{s}\gamma^{\mu}P_{L}T^{*}c)$$

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b}(\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu} \qquad \qquad \mathcal{O}_{7'} = \frac{e}{16\pi^{2}} m_{b}(\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu}$$

$$\mathcal{O}_{9\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) \qquad \qquad \mathcal{O}_{9'\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$$

$$\mathcal{O}_{10\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \qquad \qquad \mathcal{O}_{10'\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) ,$$

* Important operators in Part 1 * Important operators in Part 2

 $\mathcal{C}_{7\mathrm{eff}}^{\mathrm{SM}} = -0.3, \ \mathcal{C}_9^{\mathrm{SM}} = 4.1, \ \mathcal{C}_{10}^{\mathrm{SM}} = -4.3, \ \mathcal{C}_1^{\mathrm{SM}} = 1.1, \ \mathcal{C}_2^{\mathrm{SM}} = -0.4, \ \mathcal{C}_{\mathrm{rest}}^{\mathrm{SM}} \lesssim 10^{-2}$

Javier Virto (Uni Bern)

:: Constraining Effective coefficients

- Inclusive
 - ► $B \to X_s \gamma$ (BR) $C_7^{(\prime)}$, $C_{1,2}$
 - ► $B \to X_s \ell^+ \ell^- (dBR/dq^2)$ $C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)}, C_{1,2}^{(\prime)}$
- Exclusive leptonic
 - ► $B_s \rightarrow \ell^+ \ell^- (BR)$ $\mathcal{C}_{10}^{(\prime)}$
- Exclusive radiative/semileptonic

► $B \to K^* \gamma$ (BR, S, A₁) $C_7^{(\prime)}$, $C_{1,2}$ ► $B \to K\ell^+\ell^-$ (dBR/dq^2) $C_7^{(\prime)}$, $C_9^{(\prime)}$, $C_{10}^{(\prime)}$, $C_{1,2}$ ► $B \to K^*\ell^+\ell^-$ (dBR/dq^2 , Angular Observables) $C_7^{(\prime)}$, $C_9^{(\prime)}$, $C_{10}^{(\prime)}$, $C_{1,2}$ ► $B_s \to \phi\ell^+\ell^-$ (dBR/dq^2 , Angular Observables) $C_7^{(\prime)}$, $C_9^{(\prime)}$, $C_{10}^{(\prime)}$, $C_{1,2}$

Exclusive decay modes have huge weight in fits.

Javier Virto (Uni Bern)

:: Global Fit 2015

All include $B \to X_s \gamma$, $B \to K^* \gamma$, $B_s \to \mu^+ \mu^-$, $B \to X_s \mu^+ \mu^-$ by default.

- Fit 1 (Canonical): $B_{(s)} \rightarrow (K^{(*)}, \phi)\mu^+\mu^-$, *BR*'s and *P_i*'s, All q^2 (91 obs)
- Fit 2: Branching Ratios only (27 obs)
- Fit 3: *P_i* Angular Observables only (64 obs)
- Fit 4: S_i Angular Observables only (64 obs)
- Fit 5: $B \to K \mu^+ \mu^-$ only (14 obs)
- Fit 6: $B \to K^* \mu^+ \mu^-$ only (57 obs)
- Fit 7: $B_s \rightarrow \phi \mu^+ \mu^-$ only (20 obs)
- Fit 8: Large Recoil only (74 obs)
- Fit 9: Low Recoil only (17 obs)
- Fit 10: Only bins within [1,6] GeV² (39 obs)
- Fits 11: Bin-by-bin analysis.
- Fit 12: Full form factor approach [a la ABSZ] (91 obs)
- Fit 13: Enhanced Power Corrections (91 obs)
- Fit 14: Enhanced Charm loop effect (91 obs)

:: Consistency of different fits

Descotes-Genon, Hofer, Matias, Virto 2015

 \triangleright 3 σ constraints, always including $b \rightarrow s \gamma$ and inclusive.

 \triangleright Good consistency between BRs and Angular observables (*P_i*'s dominate).

- ▷ Good consistency between different modes ($B \rightarrow K^*$ dominates).
- \triangleright Good consistency between different q^2 regions (Large-R dominates, [1,6] bulk).
- ▷ Remember: Quite different theory issues in each case!

Javier Virto (Uni Bern)

- :: Update 2017 Capdevila, Crivellin, Descotes-Genon, Matias, Virto 2017
- ▶ LHCb : Update for $d\mathcal{B}(B^0 \to K^{\star 0}\mu^+\mu^-)$ (reduction of about 20% in magnitude).
- ▶ Belle : Isospin-averaged but lepton-flavour dependent $P_{4,5}^{\prime \, e,\mu}(B \to K^{\star}\ell\ell)$.
- ▶ ATLAS : P_1 , $P'_{4,5,6,8}$ in $B^0 \to K^{\star 0} \mu^+ \mu^-$ as well as F_L in the large recoil region.

▶ CMS : P_1 and P'_5 in $B^0 \to K^{\star 0} \mu^+ \mu^-$, at large recoil and [16,19] GeV². F_L and A_{FB} from the 2015 analysis and also the measurements at 7 TeV in 2013.

▶ LHCb : R_{K^*} in the two bins.

We perform 2 types of fits:

- All data (175 measurements)
- ▶ LFUV fit: R_{K} , $R_{K^{\star}}$, $Q_{4,5}$ and $b \rightarrow s\gamma$ (17 measurements)

:: 6D hypothesis Capdevila, Crivellin, Descotes-Genon, Matias, Virto 2017

 \triangleright All 6 WCs free (but real).

Coefficient	Best Fit	1σ	2σ
$\mathcal{C}_7^{\mathrm{NP}}$	+0.02	[-0.01, +0.05]	[-0.03, +0.07]
$\mathcal{C}_9^{\rm NP}$	-1.12	[-1.34, -0.85]	[-1.51, -0.61]
$\mathcal{C}_{10}^{\rm NP}$	+0.33	[+0.09, +0.59]	[-0.10, +0.80]
$\mathcal{C}^{\rm NP}_{7'}$	+0.03	[-0.00, +0.06]	[-0.02, +0.08]
$\mathcal{C}_{9'}^{\rm NP}$	+0.59	[+0.01, +1.12]	[-0.50, +1.56]
$\mathcal{C}^{\rm NP}_{10'}$	+0.07	[-0.23, +0.37]	[-0.50, +0.64]

▷ C_9 consistent with SM only above 3σ Descotes-Genon, Matias, Virto 1307.5683 ▷ All others consistent with the SM at 1σ , except for C'_9 , C'_{10} at 2σ . ▷ Pull_{SM} for the 6D fit is 5.0σ (compared to 3.6σ in 2015).

:: 1D hypotheses Capdevila, Crivellin, Descotes-Genon, Matias, Virto 2017

All	Best fit	2 σ	$Pull_{\mathrm{SM}}$	p-value
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	-1.10	[-1.43, -0.74]	5.7	72
$\mathcal{C}_{9\mu}^{\mathrm{NP}}=-\mathcal{C}_{10\mu}^{\mathrm{NP}}$	-0.61	[-0.87, -0.36]	5.2	61
$\mathcal{C}_{9\mu}^{\mathrm{NP}}=-\mathcal{C}_{9\mu}^{\prime}$	-1.01	[-1.33, -0.65]	5.4	66
$\mathcal{C}_{9\mu}^{\mathrm{NP}}=-3\mathcal{C}_{9e}^{\mathrm{NP}}$	-1.06	[-1.39,-0.71]	5.8	74

LFUV	Best fit	2 σ	$Pull_{\mathrm{SM}}$	p-value
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	-1.76	[-3.04, -0.76]	3.9	69
$\mathcal{C}_{9\mu}^{\mathrm{NP}}=-\mathcal{C}_{10\mu}^{\mathrm{NP}}$	-0.66	[-1.04, -0.32]	4.1	78
$\mathcal{C}_{9\mu}^{ ext{NP}} = -\mathcal{C}_{9\mu}'$	-1.64	[-2.52, -0.49]	3.2	31
$\mathcal{C}_{9\mu}^{\mathrm{NP}}=-3\mathcal{C}_{9e}^{\mathrm{NP}}$	-1.35	[-2.38, -0.59]	4.0	71

 $\mathcal{C}_{9\mu}^{
m NP} = -\mathcal{C}_{9\mu}^{\prime}$ implies $R_K \simeq 1$ $\mathcal{C}_{9\mu} = \mathcal{C}_{9e}$ has a pull of 3.3 σ

Javier Virto (Uni Bern)

:: 2D hypotheses

	All			LFUV		
2D Hyp.	Best fit	$Pull_{\mathrm{SM}}$	p-value	Best fit	$Pull_{\mathrm{SM}}$	p-value
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}})$	(-1.17,0.15)	5.5	74	(-1.13,0.40)	3.7	75
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7}')$	(-1.05,0.02)	5.5	73	(-1.75,-0.04)	3.6	66
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.09,0.45)	5.6	75	(-2.11,0.83)	3.7	73
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu})$	(-1.10,-0.19)	5.6	76	(-2.43,-0.54)	3.9	85
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9e}^{\mathrm{NP}})$	(-0.97,0.50)	5.4	72	(-1.09,0.66)	3.5	65
Нур. 1	(-1.08,0.33)	5.6	77	(-1.74,0.53)	3.8	77
Hyp. 2	(-1.00, 0.15)	4.9	61	(-1.89,0.27)	3.1	39
Hyp. 3	(-0.65,-0.13)	4.9	61	(0.58,2.53)	3.7	73
Hyp. 4	(-0.65,0.21)	4.8	59	(-0.68,0.28)	3.7	72
			3F			

$$\begin{split} & \text{Hyp. 1: } (\mathcal{C}_{9\mu}^{\text{NP}} = -\mathcal{C}_{9'\mu}, \mathcal{C}_{10\mu}^{\text{NP}} = \mathcal{C}_{10'\mu}) \\ & \text{Hyp. 2: } (\mathcal{C}_{9\mu}^{\text{NP}} = -\mathcal{C}_{9'\mu}, \mathcal{C}_{10\mu}^{\text{NP}} = -\mathcal{C}_{10'\mu}) \\ & \text{Hyp. 3: } (\mathcal{C}_{9\mu}^{\text{NP}} = -\mathcal{C}_{10\mu}^{\text{NP}}, \mathcal{C}_{9'\mu} = \mathcal{C}_{10'\mu}) \\ & \text{Hyp. 4: } (\mathcal{C}_{9\mu}^{\text{NP}} = -\mathcal{C}_{10\mu}^{\text{NP}}, \mathcal{C}_{9'\mu} = -\mathcal{C}_{10'\mu}) \end{split}$$

$:: SU(2) \times U(1)$ Gauge Invariance

Celis, Fuentes, Vicente, Virto 2017

SMEFT operator	Definition	Matching	Order
$[Q_{\ell q}^{(1)}]_{aa23}$	$\left(ar{\ell}_a\gamma_\mu\ell_a ight)\left(ar{q}_2\gamma^\mu q_3 ight)$	$\mathcal{O}_{9,10}$	Tree
$[Q^{(3)}_{\ell q}]_{aa23}$	$\left(ar{\ell}_a\gamma_\mu au^I\ell_a ight)\left(ar{q}_2\gamma^\mu au^Iq_3 ight)$	$\mathcal{O}_{9,10}$	Tree
$[Q_{qe}]_{23aa}$	$\left(ar{q}_2\gamma_\mu q_3 ight)\left(ar{e}_a\gamma^\mu e_a ight)$	$\mathcal{O}_{9,10}$	Tree
$[Q_{\ell d}]_{aa23}$	$\left(ar{\ell}_a\gamma_\mu\ell_a ight)\left(ar{d}_2\gamma^\mu d_3 ight)$	$\mathcal{O}_{9,10}^{\prime}$	Tree
$[Q_{ed}]_{aa23}$	$\left(ar{e}_a\gamma_\mu e_a ight)\left(ar{d}_2\gamma^\mu d_3 ight)$	$\mathcal{O}_{9,10}^{\prime}$	Tree
$[Q^{(1)}_{arphi\ell}]_{aa}$	$\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi ight) \left(ar{\ell}_{a}\gamma^{\mu}\ell_{a} ight)$	$\mathcal{O}_{9,10}$	1-loop
$[Q^{(3)}_{arphi\ell}]_{aa}$	$\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}arphi ight) \left(ar{\ell}_{a}\gamma^{\mu} au^{I}\ell_{a} ight)$	$\mathcal{O}_{9,10}$	1-loop
$[Q_{\ell u}]_{aa33}$	$\left(ar{\ell}_a\gamma_\mu\ell_a ight)\left(ar{u}_3\gamma^\mu u_3 ight)$	$\mathcal{O}_{9,10}$	1-loop
$[Q_{arphi e}]_{aa}$	$\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi ight) \left(ar{e}_{a}\gamma^{\mu}e_{a} ight)$	$\mathcal{O}_{9,10}$	1-loop
$[Q_{eu}]_{aa33}$	$\left(ar{e}_a\gamma_\mu e_a ight)\left(ar{u}_3\gamma^\mu u_3 ight)$	$\mathcal{O}_{9,10}$	1-loop

Loop effects:

$$\begin{split} & [\mathcal{C}_{\ell q}^{(1)}(\mu_{ew})]_{aa23} = [\mathcal{C}_{\ell q}^{(1)}(\Lambda)]_{aa23} - \frac{y_t^2 \lambda_t^{aa}}{16\pi^2} \log\left(\frac{\Lambda}{\mu_{ew}}\right) \left([\mathcal{C}_{\varphi \ell}^{(1)}(\Lambda)]_{aa} - [\mathcal{C}_{\ell u}(\Lambda)]_{aa33}\right) \\ & \mathcal{C}_{9\mu}^{\rm NP} \simeq \frac{1}{s_W^2} \frac{v^2}{\Lambda^2} \frac{x_t}{8} [\tilde{\mathcal{C}}_{\ell u}(\Lambda)]_{2233} \left[\log\left(\frac{\Lambda}{M_W}\right) + I_0(x_t)\right] \\ & \rightarrow \mathcal{C}_{\ell \mu} \text{ is a viable posibility} \end{split}$$

Javier Virto (Uni Bern) $b \rightarrow s$ Transitions : NP Fits and Hadronic effects

((

:: Hadronic uncertainties in LFNU observables

- In the presence of LFUV (SM or NP), hadronic uncertainties reappear.
- ► First bin of R_{K*} not so bad once hadronic uncertainties are considered.
- "Clean" observables in the presence of LFUV have been proposed, too.

Capdevila, Descotes-Genon, Matias, Virto 2016 Serra, Coutinho, van Dyk 2016

:: Summary I

Scenarios with $C_{9\mu}^{\rm NP} \sim -1$ give substantially improved fits for

- $\triangleright \ B o K \mu \mu$, $B o K^* \mu \mu$ and $B_s o \Phi \mu \mu$
- \triangleright BRs and angular observables (including P'_5)
- \triangleright Low q^2 and large q^2
- ▷ LFNU: R_K , R_{K^*} and Q_5

Other scenarios also motivated but all with $C_{9\mu}^{\rm NP}$.

2017 updates increase the significance of the $b \rightarrow s$ anomalies.

- Global SM pulls of $\sim 5\sigma$ in many fits, including 6D fit.
- SM p-value is 14.6% (All) and 4.4% (LFUV)

2. A Systematic Approach to CHARM

Bobeth, Chrzaszcz, van Dyk, Virto (w.i.p.)

:: Theory calculation for $B \to M \ell^+ \ell^-$

$$\mathcal{M}_{\lambda} = \frac{\mathcal{G}_{F}\alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^{*} \left[\left(\mathcal{A}_{\lambda}^{\mu} + \mathcal{H}_{\lambda}^{\mu} \right) \bar{u}_{\ell} \gamma_{\mu} v_{\ell} + \mathcal{B}_{\lambda}^{\mu} \bar{u}_{\ell} \gamma_{\mu} \gamma_{5} v_{\ell} \right] + \mathcal{O}(\alpha^{2})$$

Local:

$$\mathcal{A}^{\mu}_{\lambda} = -\frac{2m_{b}q_{\nu}}{q^{2}}C_{7} \langle M_{\lambda}|\bar{s}\sigma^{\mu\nu}P_{R}b|B\rangle + C_{9} \langle M_{\lambda}|\bar{s}\gamma^{\mu}P_{L}b|B\rangle$$
$$\mathcal{B}^{\mu}_{\lambda} = C_{10} \langle M_{\lambda}|\bar{s}\gamma^{\mu}P_{L}b|B\rangle$$

Non-Local:
$$\mathcal{H}^{\mu}_{\lambda} = -\frac{16i\pi^2}{q^2} \sum_{i=1..6,8} \mathcal{C}_i \int dx^4 e^{iq \cdot x} \langle M_{\lambda} | \mathcal{T} \{ \mathcal{J}^{\mu}_{em}(x), \mathcal{O}_i(0) \} | B \rangle$$

Two theory issues: 1. Form Factors (LCSRs, LQCD, symmetry relations ...) 2. Hadronic contribution (SCET/QCDF, OPE, LCOPE ... THIS TALK)

Javier Virto (Uni Bern)

:: Hadronic correlator : Current approaches

- ▷ QCD-Factorization at $0 < q^2 \ll M_{J/Psi}^2$ Beneke, Feldmann, Seidel
 - Based on large-energy limit, bottleneck is power corrections.
 - Used in the region where light quarks can go on-shell.
- ▷ LCOPE at $q^2 < 0 + LCSR$ for matrix elements + Dispersion relation ($\rightarrow q^2 > 0$) Khodjamirian, Mannel, Pivovarov, Wang, Rusov.
 - Systematic. Allows to compute power corrections.
 - LCOPE needs perturbative calculation at LCSR $q^2 < 0$. Difficult for NLO.
 - Assumes local duality for intermediate states in s-channel.
- ▷ Fit to data Ciuchini et al., Chovanova et al.
 - Not predictive !
 - Ad-hoc parametrization, not motivated.
 - Embedding New Physics can use "Wilks' test (but inconclusive).
- ▷ "Low-recoil" OPE at $M^2_{\psi(2S)} < q^2 < M^2_B$ Grinstein, Pirjol , Hiller, Bobeth, van Dyk
 - Must integrate over large region to "smear" spectral density.
 - Can calculate power corrections, but HMEs not known.
- ▷ Factorization Approximation + data Lyon, Zwicky, Brass, Hiller, Nisandzic
 - "Vaccuum polarization" contribution completely included.
 - Non-factorizable effects must be introduced separately.

:: Hadronic correlator : Decomposition

Bobeth, Chrzaszcz, van Dyk, Virto

$$\begin{split} \mathcal{H}^{\mu}(\boldsymbol{q},\boldsymbol{k}) &\equiv i \int \mathrm{d}^{4} x \; e^{i\boldsymbol{q}\cdot\boldsymbol{x}} \; \langle \bar{K}^{*}(\boldsymbol{k},\eta) | T\{\bar{c}\gamma^{\mu}c(\boldsymbol{x}), \mathcal{C}_{1}\mathcal{O}_{1} + \mathcal{C}_{2}\mathcal{O}_{2}(\boldsymbol{0})\} | \bar{B}(\boldsymbol{p}) \rangle \\ &\equiv M_{B}^{2} \, \eta_{\alpha}^{*} \; \left[S_{\perp}^{\alpha\mu} \; \mathcal{H}_{\perp}(\boldsymbol{q}^{2}) - S_{\parallel}^{\alpha\mu} \; \mathcal{H}_{\parallel}(\boldsymbol{q}^{2}) - S_{0}^{\alpha\mu} \; \mathcal{H}_{0}(\boldsymbol{q}^{2}) \right] \end{split}$$

▷ $S_{\lambda}^{\alpha\mu}$ – basis of Lorentz structures (carefully chosen)

 $\triangleright~\mathcal{H}_{\lambda}~$ – Lorentz invariant correlation functions

▷ λ – polarization states (⊥, ||, 0)

The idea :

- ▷ Understand analytic structure of $\mathcal{H}_{\lambda}(q^2)$ to write a general parametrisation consistent with QCD.
- ▷ Use **suitable** experimental information to constrain the correlator.
- ▷ Use theory to constrain the correlator in **suitable** kinematic points.

• narrow charmonia, assumed to be stable

• narrow charmonia, assumed to be stable red branch cut from $D\bar{D}$ production

- \circ broad charmonia, decaying to $D\bar{D}$
- \times potential mirror poles

Javier Virto (Uni Bern)

• narrow charmonia, assumed to be stable red branch cut from $D\bar{D}$ production

- \circ broad charmonia, decaying to $D\bar{D}$
- $\times\,$ potential mirror poles
- blue branch cut from light hadrons

Javier Virto (Uni Bern)

- \circ broad charmonia, decaying to $D\bar{D}$
- \times potential mirror poles
- blue branch cut from light hadrons

green q^2 -dep. imaginary due to branch cut in p^2

:: Understanding the p^2 cut

Bobeth, Chrzaszcz, van Dyk, Virto

Trick : Add spurious momentum h to \mathcal{O}_i Recover physical kinematics as $h \to 0$

- $\triangleright \ s \sim p^2$ independent of $t \sim q^2$.
- Cut in p² does not translate into cut in q²
- ▷ Two correlators:

 $\mathcal{H}_\lambda(q^2) o \mathcal{H}_\lambda^{\mathsf{real}}(q^2) \!+\! i \, \mathcal{H}_\lambda^{\mathsf{imag}}(q^2)$

- $\triangleright \ \ \, {\rm Both} \ \ \, {\cal H}^{\rm real}_\lambda(q^2) \ \, {\rm and} \ \ \, {\cal H}^{\rm imag}_\lambda(q^2) \\ {\rm are} \ \, {\rm analytic} \ \, {\rm at} \ \ \, q^2 \leq 0 \\ \ \ \,$
- $\triangleright \text{ Both } \mathcal{H}_{\lambda}^{\text{real}}(q^2) \text{ and } \mathcal{H}_{\lambda}^{\text{imag}}(q^2) \\ \text{have branch cuts at } q^2 > 0$

Javier Virto (Uni Bern)

:: Parametrization A : J/ψ , $\psi(2s)$ poles + $D\bar{D}$ cut Bobeth, Chrzaszcz, van Dyk, Virto

Motivated by famous "z-parametrization" of form factors. Boyd et al '94, Bourelly et al '08

1. extract the poles

$$\hat{\mathcal{H}}_{\lambda}(q^2) = (q^2 - M_{J/\psi}^2)(q^2 - M_{\psi(2S)}^2) \, \mathcal{H}_{\lambda}(q^2)$$

- 2. $\hat{\mathcal{H}}_{\lambda}(q^2)$ is analytic except for $D\bar{D}$ cut.
- 3. Perform conformal mapping $q^2 \mapsto z(q^2)$.
- 4. $\hat{\mathcal{H}}_{\lambda}(z)$ analytic within unit circle.
- 5. Taylor expand $\hat{\mathcal{H}}_{\lambda}(z)$ around z = 0.
- 6. Good convergence expected since |z| < 0.42 for $-5 \,{\rm GeV}^2 \le q^2 \le 14 {\rm GeV}^2$

:: Experimental constraints on the correlator Bobeth, Chrzaszcz, van Dyk, Virto

The correlators \mathcal{H}_{λ} can be related to observables in the decays $B \to K^* J/\psi, K^* \psi(2S)$

▷ Independent of short-distance contributions (C_7 , C_9 , etc) in $B \to K^* \{\gamma, \mu^+ \mu^-\}$

 \triangleright Important constraints at $q^2 \simeq 9 \, {
m GeV}^2$ and $q^2 \simeq 14 \, {
m GeV}^2$.

Details:

- \triangleright residues of the correlator can be expressed in terms of $B \to K^* \psi$ amplitudes. Khodjamirian et. al. 2010
- ▷ \mathcal{B} and 4 angular observables measured in $B \to K^* J/\psi$ and $B \to K^* \psi(2S)$ LHCb 2013, BaBar 2007
- ▷ Allows to constrain all moduli and two relative phases of the amplitudes, and therefore of the residues of the correlator.

:: Theory constraints on the correlator

Bobeth, Chrzaszcz, van Dyk, Virto

The correlator can be calculated at $q^2 < 0$ reliably by means of a light-cone OPE

Khodjamirian et al. 2010

Using $\mathcal{H}_{\perp}(q^2)$ as an example:

 $\mathcal{H}_{\perp}(q^2) = \# \times g(q^2, m_c^2) \mathcal{F}_{\perp}(q^2) + \# \times \widetilde{V}_1(q^2) + \text{NLO}_{\alpha_s}$

first term is usual form-factor-like contribution

- second term arises from soft-gluon effects only
- ▷ third term arises from NLO corrections (produces p^2 cut !!)

We use this to constrain the correlators at $q^2 = -1 \,\mathrm{GeV}^2$ and $q^2 = -5 \,\mathrm{GeV}^2$.

:: Results Parametrization A

Preliminary

Bobeth, Chrzaszcz, van Dyk, Virto

Results for $\operatorname{Re}(\mathcal{H}_{\perp}/\mathcal{F}_{\perp})$:

Discrete ambiguity in phases of the residues : (only two shown)

Left : $\phi_{J/\psi} = \pi$, $\phi_{\psi(2S)} = 0$ Right : $\phi_{J/\psi} = \phi_{\psi(2S)} = \pi$

Javier Virto (Uni Bern)

:: Results Parametrization A

Preliminary

Bobeth, Chrzaszcz, van Dyk, Virto

SM predictions for P'_5

Left : $\phi_{J/\psi} = \pi$, $\phi_{\psi(2S)} = 0$

▷ first-time use of inter-resonance bin : great potential!!

Javier Virto (Uni Bern)

:: Confronting $B \rightarrow K^{\star} \mu \mu$ data

Preliminary

Bobeth, Chrzaszcz, van Dyk, Virto

Global fit to all $B \to K^* \{\gamma, \mu^+ \mu^-, J/\psi, \psi(2S)\}$ data using Parametrization A

:: Summary II

Systematic framework to access nonlocal correlator

- > First approach to use both theory inputs and experimental constraints in fit
- Can accommodate existing and future theory results (systematically improvable)
- \triangleright Provides model-independent prior predictions for $B \to K^{(*)} \mu^+ \mu^-$
- Can be easily embedded in global fits

Present data in tension with parametrization A

 $\triangleright\,$ favours NP interpretation with $>4\sigma$

▷ Other results not disclosed here: see Bobeth, Chrzaszcz, van Dyk, Virto w.i.p

▷ Complex parametrization A : needs analytic NLO Greub, Virto w.i.p.

 \triangleright Parametrization B : includes light-hadron cut from ψ decay

Back-up

:: Hadronic correlator: are we missing something?

Descotes-Genon, Hofer, Matias, Virto

 \Rightarrow No evidence for q^2 -dependence \rightarrow Good crosscheck of hadronic contribution!

Javier Virto (Uni Bern)

:: Overview of exp. constraints on Correlator

Bobeth, Chrzaszcz, van Dyk, Virto

name	observables	degrees of freedom	source
	\mathcal{B} , \mathcal{F}_{\perp} , \mathcal{F}_{\parallel} , δ_{\perp} , δ_{\parallel}	5	BaBar
	\mathcal{B} , \mathcal{F}_{\perp} , \mathcal{F}_{\parallel} , δ_{\perp} , δ_{\parallel}	5	Belle
$ar{B} ightarrow ar{K}^* {J}/\psi$	${\cal B},~{\it F_{\perp}},~{\it F_{0}},~\delta_{\perp},~\delta_{\parallel}$	5	CDF
	${\mathcal B}$	1	CLEO
	F_{\perp} , F_0 , δ_{\perp} , δ_{\parallel}	4	LHCb
	$\mathcal{B}, F_{\perp}, F_{\parallel}, \delta_{\perp}, \delta_{\parallel}$	5	BaBar
$\bar{R} \rightarrow \bar{K}^* \psi(2S)$	${\mathcal B}$	1	Belle
$B \rightarrow K \psi(23)$	${\mathcal B}$	1	CDF
	${\mathcal B}$	1	CLEO
	B	1	CLEO
$\bar{B} ightarrow \bar{K}^* \gamma$	\mathcal{B} , $S_{K^*\gamma}$	1	Belle
	$\mathcal{B}, S_{K^*\gamma}$	1	BaBar
$ar{B} o ar{K}^* \mu^+ \mu^-$	${\cal B},\; F_L,\; S_3,\; S_4,\; S_5,\; A_{\rm FB},\; S_7,\; S_8,\; S_9$	4 × 9	LHCb
$ar{B} ightarrow ar{K}^* \mu^+ \mu^-$ "inter-resonance"	${\cal B},\; F_L,\; S_3,\; S_4,\; S_5,\; A_{\rm FB},\; S_7,\; S_8,\; S_9$	9	LHCb

:: Anomaly patterns

		Rĸ	$\langle P_5' angle_{ extsf{4,6],[6,8]}}$	$BR(B_s \rightarrow \phi \mu \mu)$	low recoil BR	Best fit now
\mathcal{C}_{0}^{NP}	+	,			,	
-9	—	\checkmark	\checkmark	\checkmark	\checkmark	X
CNP	+	\checkmark		\checkmark	\checkmark	X
C ₁₀	—		\checkmark			
CNP	+			\checkmark	\checkmark	X
C ₉ ,	_	\checkmark	\checkmark			
$\mathcal{C}_{10'}^{\text{NP}}$	+	\checkmark	\checkmark			
	-			\checkmark	\checkmark	X

 $\triangleright \ \mathcal{C}_9 < 0$ consistent with all the anomalies

▷ No consistent and global alternative from long-distance dynamics.

:: Outlook: Potential of inclusive measurements at Belle-2

If the (current) exclusive fit is accurate, inclusive $b \rightarrow s\ell\ell$ Belle-2 measurements alone have the potential for a NP discovery:

Javier Virto (Uni Bern)