Knowns \& Unknowns in LFUU fits
based on arXiv: 1704.05447
in collaboration with
M.Ciuchini, A.Coutinho, M.Fedele, E.Franco, A.Paul and L.Silvestrini.

EASTER EGG HUNT

ALSO SUPPORTED BY

NOT SO LONG TIME BACK ...

Talking about $B \rightarrow K^{*} \mu \mu$ channel \& the P'5 anomaly:
" Unless any other statistically significant anomaly shows up, from this single decay mode we cannot learn much about New Physics! "
In our analysis of this exclusive decay, anomalies disappear when one conservatively (gu)e(s)stimates non-factorizable QCD power corrections. Ciuchini et al., JHEP 1606 (2016) I I6
i^{n}

JHEP 1602 (2016) 104

PRL 118 (2017) 111801

UPDATE: CURRENT SITUATION MAY LOOK LIKE THIS

i.e., my collaborators \& I harmlessly lying

$$
R_{K^{(*)},[1(.1), 6]}^{\mathrm{LHCb}}<1
$$ on the ground ... OR MAYBE NOT?

$$
Q_{5,[4,8]}^{\mathrm{Belle}}>0
$$

... INDEED:

Is evidence for New Physics (NP) in Qgv operator indisputable?

Main content of this ~ 10 min contribution

"Flavourful
Easter eggs"

Helicity (λ) amplitudes relevant in this study: $H_{V}(\lambda) \propto C_{9} \tilde{V}_{\lambda}+\frac{2 m_{b} m_{B}}{q^{2}} C_{7} \tilde{T}_{\lambda}-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}$, $H_{A}(\lambda) \propto C_{10} \tilde{V}_{\lambda}, H_{P} \propto \frac{2 m_{\ell} m_{B}}{q^{2}} C_{10}\left(1+\frac{m_{s}}{m_{B}}\right) \widetilde{S}$.

There are known knowns; there are things we

 know that we know.There are known unknowns; that is to say, there are things that we now know we don't know.

But there are also unknown unknowns - there are things we do not know we don't know.
-Donald Rumsfeld

The known knowns: QCD sum rules on light-cone (LCSR) at large recoil in (form factors) agreement with extrapolated Lattice results at low recoil.
The known unknowns: non-factorizable power corrections to the amplitude of (long-distance effects) exclusive decay modes; estimates from LCSR may suggest
 small effects in B to K amplitude, but not in B to K^{*} one!
\longrightarrow possible degeneracy in H_{v} with NP in $Q_{7 \gamma} \& Q_{9 v}$
The unknowns (not so) unknown ...
See Jäger \& Virto's talks for further details ...

public@http://hepfit.roma1.infn.it

Higgs \& Electroweak Precision Tests

PoS ICHEP2016 (2017) 690
Nucl.Part.Phys.Proc. 273-275 (2016)
JHEP 1612 (2016) 135
JHEP 1308 (2013) 106

Flavour Physics

Nucl.Part.Phys.Proc. 285-286 (2017)
PoS ICHEP2016 (2016) 584
JHEP 1606 (2016) 116

Our global analysis is carried out by means of Bayesian inference. (see e.g. 10.5170/CERN-99-03 - CERN Yellow Reports - G.D'Agostini)

We use the Information Criterion for Predictive Bayesian Model Selection:

$$
I C=-2 \overline{\log L}+4 \sigma_{\log L}^{2}
$$

T. Ando, "Predictive Bayesian Model Selection", AJMMS 31 (2011)

1st term $->$ how well model fits data
2nd term —> penalty on model complexity

$\Delta I C \simeq \ln \frac{\mathcal{P}\left(\text { data } \mid M_{1}\right)}{\mathcal{P}\left(\text { data } \mid M_{2}\right)}$	Evidence against higher $I C\left(M_{1}\right)$
0 to 2	about bare mention
2 to 6	positive/substantial
6 to 10	strong
>10	very strong/decisive

Kass \& Raftery, "Bayes Factors", JASS 90 (1995) 430

MCMC with total of 93 SM parameters with Gaussian or flat prior distribution. DATA INCLUDED: MEASUREMENTS RELATEDTO $K^{(*)}$ \& PHI IN LARGE RECOIL REGION ONLY + BsTO MU MU \& BTO Xs GAMMA (LHCB, BELLE,ATLAS,CMS, SEE BACKUP!).

About known knowns ...

Form factors from LCSR \&/or Lattice, with correlations.
... and known unknowns

JHEP I608 (2016) 098 Bharucha et al.
PRD 93 (2016) 025026 Bailey et al.

Non-factorizable part of B to K^{\star} / I amplitude parametrized as follows:
Ciuchini et al.,JHEP I 606 (2016) I I 6

$$
h_{\lambda}\left(q^{2}\right)=h_{\lambda}^{(0)}+\frac{q^{2}}{1 \mathrm{GeV}^{2}} h_{\lambda}^{(1)}+\frac{q^{4}}{1 \mathrm{GeV}^{4}} h_{\lambda}^{(2)}
$$

$$
\begin{aligned}
& \left|h_{0, \pm}^{(0,1,2)}\right| \in\left[0,2 \cdot 10^{-3}\right] \\
& \operatorname{Arg}\left(h_{0, \pm}^{(0,1,2)}\right) \in[0,2 \pi)
\end{aligned}
$$

also used as a proxy also for $B_{s} \longrightarrow \phi \mu \mu$ mode. i.e. flat priors with large ranges
Unknown unknowns in $\triangle \mathrm{B}=1 \mathrm{EFT}$
2 different approaches implemented
$C_{7}^{N P}, C_{9, e}^{N P}, C_{9, \mu}^{N P}, C_{10, e}^{N P}, C_{10, \mu}^{N P}$

PMD approach, LCSR on cc-loop + dispersion relation in whole large recoil region Phenomenological Model Driven
PDD approach, LCSR result enforced only nearby the light-cone, i.e. $\mathrm{q}^{2} \leq 1 \mathrm{GeV}^{2}$ Phenomenological Data Driven

NP results - Part I

"Chasing well-known Easter eggs!"
Q : What is the significance of $\mathrm{C}_{9, \mu}^{N D} \neq 0$?

$$
\begin{gathered}
\text { NP results _ Part II —. } \\
\text { "Digging in } \sim \text { no man's land ..." } \\
\text { Q: Is NP in Qgv, } \mu \text { the << only way to go }>\text { ?? }
\end{gathered}
$$

flat prior ranges for NP

$C_{7}^{N P}$	\in	$[-0.3,0.3]$
$C_{10, \mu}^{N P}$	\in	$[-0.7,0.7]$
$C_{10, e}^{N P}$	\in	$[-4,4]$

dashed lines in ID histograms 16th, 50th, 84th percentiles 2D joint probability density 1,2,3 o contours (darker to lighter) blue lines and blue square SM limit of NP Wilson coeffs

PMD: $/ C=221$
PDD: $/ C=172$

$C_{10, e}^{N P}$

$C_{10, e}^{N P}=-1.79_{-0.59}^{+0.53}$
$C_{10, e}^{N P}=-1.63_{-0.58}^{+0.51}$

$C_{7}^{N P}$

$C_{10, \mu}^{N P}$
$C_{10, e}^{N P}$
"Disfavoured" NP scenarios allowed by a more careful treatment of nonfactorizable QCD power corrections.

NP results - Part III -

*** The Bayesian State Of Mind ***

Summary \& Conclusions

$S \quad$ Size of arrows proportional to amount of money some of my collaborators might put on ...

SIGNIFICANCE ($\sim 2 \sigma$ TO ~7 σ) OF NP INTHE MUONIC VECTOR CURRENT DEPENDS ON ESTIMATED HADRONIC UNCERTAINTIES.
On general grounds it is the NP

WE MAY BE SITTING IN FRONT OF ~2 $\sigma-3 \sigma$ NP EVIDENCE ...
I.E., AS OF NOW, THE SM

PREDICTION IS COMPATIBLE AT $\sim 2.5 \sigma$ LEVEL WITH $R_{k} \& R_{k}$. scenario preferred by current data.

Backups

Fitting w/o any of the Angular Observables.
dashed lines in ID histograms 16th, 50th, 84th percentiles 2D joint probability density 1,2,3 σ contours (darker to lighter) blue lines and blue square SM limit of NP Wilson coeffs

PMD WITH ALL MEASUREMENTS PDD WITH ALL MEASUREMENTS PMD W/O ANGULAR OBS DATA

Exploring NP effects only in the muon channel.

PMD: $I C=173$
PDD: $I C=171$

$$
C_{10, \mu}^{N P}=0.06_{-0.08}^{+0.09}
$$

$$
C_{10, \mu}^{N P}=0.09_{-0.09}^{+0.1}
$$

$C_{9, \mu}^{N P}$
$C_{10, \mu}^{N P}$
dashed lines in ID histograms 16th, 50th, 84th percentiles
2D joint probability density
1,2,3 σ contours (darker to lighter) blue lines and blue square SM limit of NP Wilson coeffs

Exploring NP effects only in the electron channel.

$$
\begin{aligned}
& \mathrm{PMD}: I C=217 \\
& \mathrm{PDD}: I C=169
\end{aligned}
$$

$C_{9, e}^{N P}$
$C_{10, e}^{N P}$
dashed lines in ID histograms 16th, 50th, 84th percentiles
2D joint probability density 1,2,3 σ contours (darker to lighter) blue lines and blue square SM limit of NP Wilson coeffs

Vector-like $+\mathrm{C}_{7}$ NP case

PDD approach

PMD approach
$\overline{\log L}=-87.0, \sigma_{\log L}^{2}=11.8, I C \simeq 221 \quad \overline{\log L}=-69.1, \sigma_{\log L}^{2}=8.6, I C \simeq 172$
Bayesian NP case
PMD approach
$\overline{\log L}=-70.8, \sigma_{\log L}^{2}=9.0, I C \simeq 178 \quad \overline{\log L}=-68.4, \sigma_{\log L}^{2}=9.2, I C \simeq 174$
Purely Muonic NP case

PMD approach
$\overline{\log L}=-70.7, \sigma_{\log L}^{2}=7.9, I C \simeq 173 \quad \overline{\log L}=-68.6, \sigma_{\log L}^{2}=8.5, I C \simeq 171$
Purely Electronic NP case

PDD approach
$\overline{\log L}=-68.2, \sigma_{\log L}^{2}=8.2, I C \simeq 169$

~SU(2) NP case

PMD approach
$\overline{\log L}=-85.8, \sigma_{\log L}^{2}=11.1, I C \simeq 216$

PDD approach

$$
\overline{\log L}=-68.3, \sigma_{\log L}^{2}=8.7, I C \simeq 171
$$

Set of measurements included in the present analysis

$$
F_{L}, A_{F B}, S_{3,4,5,7,8,9} \quad \text { JHEP } 16 \mid 1(2016) 047
$$

i.e. available angular info for $K^{(*)}, \phi$ modes

LHCb

$$
\begin{gathered}
\mathcal{B}\left(B \rightarrow K^{(*)} \ell \ell, \gamma\right) \\
\mathcal{B}\left(B_{s} \rightarrow \phi \mu \mu, \gamma\right)
\end{gathered}
$$

$R_{K,[1,6]}, R_{K^{*},[0.045,1.1],[1.1,6]}$
JHEP I 602 (2016) 104
JHEP I509 (2015) I79
JHEP I504 (20 I5) 064
Nucl.Phys. B867 (2013) I-I8
PRL I I 3 (2014) I5 60 I
indico.cern.ch/event/580620/
ATLAS

$$
F_{L}, A_{F B}, S_{3,4,5,7,8}
$$

CMS $P_{1}, P_{5}^{\prime}, F_{L}, A_{F B}, \mathcal{B}\left(B \rightarrow K^{*} \mu \mu\right)$ CMS-PAS-BPH-15-008 twiki.cern/.../CMSPublic/...

$$
P_{5(\mu, e)}^{\prime}
$$

We use data in the large recoil region only, i.e. where anomalies show up.
We take into account correlation matrices when experimentally provided.

$$
\mathcal{B}\left(B_{s} \rightarrow \mu \mu\right), \mathcal{B}\left(B \rightarrow X_{s} \gamma\right)
$$

LHCB-PAPER-2017-00। FERMILAB-PUB-|6-6|I-ND

Effective Field Theory of Weak Interactions for $b \rightarrow s$ II transitions

$$
\begin{aligned}
& Q_{1}^{q=u, c}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} T^{a} b_{L}\right) \\
& Q_{2}^{q=u, c}=\left(\bar{s}_{L} \gamma_{\mu} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} b_{L}\right) \\
& P_{3}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} q\right) \\
& P_{4}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right) \\
& P_{5}=\left(\bar{s}_{L} \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} q\right) \\
& P_{6}=\left(\bar{s}_{L} \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} T^{a} q\right) \\
& Q_{8 g}=\frac{g_{s}}{16 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu} P_{R} G^{\mu \nu} b
\end{aligned}
$$

$$
\mathcal{H}_{\mathrm{eff}}^{\Delta B=1} \sim \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}+\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}+\gamma}
$$

Within Standard Model (SM),

 quantum running from M_{w} down to low scale $\sim 5 \mathrm{GeV}$$$
\begin{aligned}
& C_{1} \sim-0.25, C_{2} \sim 1.0, C_{8} \sim-0.2 \\
& C_{7} \sim-0.3, C_{9} \sim 4.2, C_{10} \sim-4.1
\end{aligned}
$$

$Q_{7 \gamma}=\frac{e}{16 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu} P_{R} F^{\mu \nu} b$

FOCUS OF PRESENT ANALYSIS

CP-conserving New Physics (NP) effects, phenomenologically seen as shifts of SM Wilson coefficients at the low scale:
$Q_{10 A}=\frac{\alpha_{e m}}{4 \pi}\left(\bar{\gamma} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma^{5} \ell\right)$

$$
C_{7}^{N P}, C_{9, e}^{N P}, C_{9, \mu}^{N P}, C_{10, e}^{N P}, C_{10, \mu}^{N P}
$$

$\mathcal{A}^{(\mathrm{had})}\left(\bar{B} \rightarrow \bar{K}^{*} \ell \ell\right) \sim \frac{e^{2}}{q^{2}}\left\langle\ell^{-} \ell^{+}\right| \bar{\ell} \gamma_{\mu} \ell|0\rangle \int d^{4} x e^{i q x}\left\langle\bar{K}^{*}\right| T\left\{\bar{q}(x) \gamma^{\mu} q(x) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\right\}|\bar{B}\rangle$
i.e. @ first order in $\boldsymbol{\alpha}_{\mathrm{em}}$ the hadronic piece can contribute!

The above correlator is the weakest part of the theoretical prediction.
OBS.

Single soft gluon emission from charm-loop estimated with LCSRs. A.Khodjamirian, T.Mannel,A.A. Pivovarov and Y.-M.Wang JHEP IO09 (2010) 089
arXiv:1006.4945

DRAWBACKS ON PHENO APPLICATIONS!

Correlator expanded on the light-cone: maybe a right estimate, but for small q^{2}.

- Multiple soft gluon emission is likely relevant: negligible when $\mathrm{q}^{2} \ll 4 \mathrm{~m}^{2}$.
$\checkmark h_{\lambda} \equiv \frac{\epsilon_{\mu}(\lambda)}{m_{B}^{2}} \int d^{4} x e^{i q x}\left\langle\bar{K}^{*}\right| T\left\{j_{\mathrm{em}}^{\mu}(x) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\right\}|\bar{B}\rangle$
non-factorizable hadronic part of B to K *\| amplitude
In the K^{*} helicity basis, $\left\langle\bar{K}^{*} \ell^{-} \ell^{+}\right| \mathcal{H}_{\text {eff }}^{\Delta B=1}|\bar{B}\rangle$ can be decomposed as:

$$
\begin{aligned}
& H_{V}(\lambda) \propto \underline{C_{9} \tilde{V}_{\lambda}}+\frac{2 m_{b} m_{B}}{q^{2}} C_{7} \tilde{T}_{\lambda}-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} \underline{=}, \quad(\lambda=0, \pm) \\
& H_{A}(\lambda) \propto C_{10} \tilde{h}_{\lambda}, H_{P} \propto \frac{2 m_{\ell} m_{B}}{q^{2}} C_{10}\left(1+\frac{m_{s}}{m_{B}}\right) \widetilde{S},
\end{aligned}
$$

I) All the observables introduced so far are functions of $H_{V, A, P}$. In the approximation of \sim const form factors in q^{2} :
2) The Oth order and I st order power correction in q^{2} is degenerate with NP effects in Q_{7} and Q_{9} respectively .
3) Higher order power-corrections in q^{2} instead likely associated to genuinely Standard hadronic physics .
short distance (SD) physics long distance (LD) cc-loop from JHEP 1009 (2010) 089

$$
-\mathbf{C}_{9}^{\mathrm{SD}}-\left|C_{9}^{0 C D F}\right|-2 \mathrm{C}_{2}\left|\tilde{\mathrm{~g}}_{i}^{f i t}\right|-2 \mathrm{C}_{2} \tilde{\mathrm{~g}}_{i}^{\mathrm{KMPW}}-\ldots-4 \mathrm{~m}_{c}^{2}
$$

linear combinations of $h_{+,, 0}$

I) Light-blue band identifiable with LD cc-loop read from the fit IMPORTANT DEPARTURE FROMTHEORETICAL ESTIMATES BASED ON LCSR + SINGLE SOFT GLUON APPROXVALID FOR $q^{2} \ll 4 \mathrm{~m}^{2} \mathrm{c}$
2) NP contributing to Q9v should be independent of dilepton mass q^{2} DEPENDENCE SHOWN IN LIGHT-BLUE BAND DISFAVORS NEW SD EFFECTS, BUT POINTSTO UNDERESTIMATED HADRONIC PHYSICS!

Ciuchini et al. ‘16

Parameter	Absolute value
$h_{0}^{(0)}$	$(5.7 \pm 2.0) \cdot 10^{-4}$
$h_{0}^{(1)}$	$(2.3 \pm 1.6) \cdot 10^{-4}$
$h_{0}^{(2)}$	$(2.8 \pm 2.1) \cdot 10^{-5}$
$h_{+}^{(0)}$	$(7.9 \pm 6.9) \cdot 10^{-6}$
$h_{+}^{(1)}$	$(3.8 \pm 2.8) \cdot 10^{-5}$
$h_{+}^{(2)}$	$(1.4 \pm 1.0) \cdot 10^{-5}$
$h_{-}^{(0)}$	$(5.4 \pm 2.2) \cdot 10^{-5}$
$h_{-}^{(1)}$	$(5.2 \pm 3.8) \cdot 10^{-5}$
$h_{-}^{(2)}$	$(2.5 \pm 1.0) \cdot 10^{-5}$

$\left\|h_{0}^{(0)}\right\| \cdot 10^{4}$	1.74 ± 0.99	1.83 ± 0.99	1.8 ± 1.0	1.3 ± 1.1	1.2 ± 1.0	1.7 ± 1.0
$\left\|h_{+}^{(0)}\right\| \cdot 10^{4}$	0.068 ± 0.054	0.068 ± 0.053	0.067 ± 0.053	0.064 ± 0.051	0.067 ± 0.053	0.068 ± 0.053
$\left\|h_{-}^{(0)}\right\| \cdot 10^{4}$	0.49 ± 0.12	0.49 ± 0.12	0.49 ± 0.12	0.47 ± 0.12	0.49 ± 0.12	0.49 ± 0.12
$\left\|h_{0}^{(1)}\right\| \cdot 10^{4}$	0.70 ± 0.65	0.70 ± 0.65	0.73 ± 0.68	0.80 ± 0.67	0.76 ± 0.66	0.69 ± 0.67
$\left\|h_{+}^{(1)}\right\| \cdot 10^{4}$	0.107 ± 0.093	0.108 ± 0.093	0.111 ± 0.096	0.096 ± 0.089	0.107 ± 0.098	0.112 ± 0.097
$\left\|h_{-}^{(1)}\right\| \cdot 10^{4}$	0.14 ± 0.12	0.14 ± 0.12	0.15 ± 0.12	0.18 ± 0.13	0.18 ± 0.13	0.15 ± 0.13
$\left\|h_{0}^{(2)}\right\| \cdot 10^{4}$	0.11 ± 0.10	0.11 ± 0.10	0.11 ± 0.11	0.12 ± 0.10	0.11 ± 0.10	0.11 ± 0.10
$\left\|h_{+}^{(2)}\right\| \cdot 10^{4}$	0.023 ± 0.020	0.023 ± 0.019	0.023 ± 0.020	0.019 ± 0.018	0.021 ± 0.020	0.024 ± 0.020
$\left\|h_{-}^{(2)}\right\| \cdot 10^{4}$	0.026 ± 0.022	0.026 ± 0.022	0.026 ± 0.022	0.033 ± 0.022	0.032 ± 0.023	0.026 ± 0.022

