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FIG. 1: Dominant one-loop contribution to the operator
(�⇤D⇢�)(µ̄L�

⇢µL) yielding �µµ(0) 6= 0. The Z0 line is under-
stood to be attached wherever possible. A similar diagram
with µ ! ⌫µ and L� ! L0 induces the Z0 coupling to neu-
trinos.

As of the flavor structure of U(1)X interactions, we
follow a phenomenological approach and introduce only
interactions that are required to explain the observed
anomalies. We thus assume that the dark sector only cou-
ples to the left-handed fermions µL, ⌫µL and b̄LsL+s̄LbL.
The magnitude of the Z 0b̄LsL coupling is experimentally
constrained from Bs meson mixing. Allowing for a NP
contribution of O(10%) to the mass di↵erence �MBs

leads to the bound [9, 23][61]

|�bs| . 2.4⇥ 10�3

✓
mZ0/g0

300GeV

◆
. (9)

We do not address here the origin of these peculiar flavor
structures in the lepton and quark sectors. We acknowl-
edge, however, that explicit flavor completions of this
model could lead to correlated e↵ects in other meson-
physics and leptonic observables [14, 24–27].

III. EXPLAINING MUON-RELATED
ANOMALIES

New contributions to the muon anomalous magnetic
moment are induced at the one-loop level through the
diagram in FIG. 2, yielding

�aNP
µ =

|y|2
32⇡2

m2
µ

m2
�0

Fg(⌧) [1 +A(⌧, �)] , (10)

with mµ the muon mass and A(⌧, �) ⌘ Fg(⌧/(1+�))
(1+�)Fg(⌧)

. The

loop function Fg is given in Eq. (A1). For a degenerate
dark spectrum, we have Fg(1) = 1/12 and A(1, 0) = 1,
so that the discrepancy �aµ in Eq. (1) is accommodated
for m�0 ' 45|y|GeV. As we will see, the LHCb anomalies
typically require a significant scalar versus pseudo-scalar
mass splitting � � 1, with a dark-lepton versus DM mass
splitting roughly in the interval ⌧ 2 [1, �]. Eq. (1) is then
accommodated for m�0 ' 32|y|(1 + 2/�)GeV (⌧ ' 1) or
m�0 ' 55|y|/

p
�GeV (⌧ ' � � 1). (See APP. A for

details.)
Consider now the b ! sµ+µ� anomalies. At the

b�quark mass scale, the NP amplitude is described by
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FIG. 2: One-loop NP contribution to gµ � 2 and the Z cou-
pling to muons. The photon � is to be attached to L�, and
the Z boson to either of the fermion lines.
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FIG. 3: Leading NP contribution to the Wilson coe�cients
Cµ

9,10. The shaded disk denotes the radiatively induced Z0

coupling to muon pairs at zero momentum exchange, as shown
in FIG. 1.

the e↵ective Hamiltonian

HNP
e↵ = � ↵GF

2
p
2⇡

VtbV
⇤
ts

X

i

CiOi + h.c. , (11)

where ↵ and GF are, respectively, the fine-structure and
Fermi constants, Vij are CKM matrix elements, and the
sum runs over the operators (` = e, µ)

O`
9 ⌘ b̄�⇢(1� �5)s ¯̀�⇢` , (12)

O`
10 ⌘ b̄�⇢(1� �5)s ¯̀�⇢�5` . (13)

A global fit to leptonic, semi-leptonic and radiative B
decays favors e↵ective couplings to muons [16, 28]

Cµ
9 = �Cµ

10 ' �0.5 (14)

and negligible electron coe�cients Ce
9,10 ' 0 [62]. In our

model, Cµ
9,10 are induced at the one-loop level through

the diagram in FIG. 3, which gives

Cµ
9 = �Cµ

10 = � g02

4m2
Z0

⇤2
SM

|VtbV
⇤
ts|

VtbV ⇤
ts

�bs�µµ , (15)

where ⇤SM = [2
p
2⇡/(↵GF |VtbV

⇤
ts|)]1/2 ' 50TeV is the

scale of the SM contributions. Accommodating the b !
sµ+µ� anomalies as in Eq. (14), while respecting the
�MBs bound from Eq. (9), yields a lower bound on the
muon form factor,

�µµ(m
2
b) & 0.029

✓
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300GeV

◆
. (16)
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II. A MINIMAL MODEL

We consider the extension of the SM by a new (dark)
sector, consisting of heavy leptons L, Lc and quarks Q,
Qc with vector-like gauge couplings, as well as two com-
plex scalars, � and �. Interactions with the SM are medi-
ated by a new gauge boson Z 0 associated with an abelian
U(1)X symmetry, under which only the particles of the
dark sector are charged. The quantum numbers of all
new particles are listed in TAB. I [58]. Since no chi-
ral fermion carries U(1)X charge, the model is anomaly
free [19]. Notice that our choice of U(1)X charges for-
bids tree-level Z 0 couplings with SM leptons. This is
crucial in order to simultaneously address the gµ� 2 and
b ! sµ+µ� anomalies with NP around the weak scale.

Besides canonical kinetic terms, the relevant new in-
teractions in the Lagrangian are

LNP � ✏Bµ⌫X
µ⌫ � ��H |�|2|H|2 � ��H |�|2|H|2

�V (�,�)�
⇥
y (l̄L)�+ w (q̄Q)�+ h.c.

⇤
, (3)

where

V (�,�) ⌘ (r��2 + h.c.) + ��|�|4 + ��|�|4 , (4)

and lT = (⌫`L , `L)
T , qT = (uL, dL)

T and H are the SM
lepton, quark and Higgs doublets, while Bµ⌫ and Xµ⌫ are
the hypercharge and U(1)X field strength tensors, respec-
tively. The U(1)X symmetry is spontaneously broken by
the vacuum expectation value (vev) of �, leading to a Z 0

mass of mZ0 = 2g0h�i. It furthermore lifts the mass de-
generacy between the components of � = (�0 + i�0)/

p
2

by

� ⌘
m2

�0

m2
�0

� 1 = �2
rh�i
m2

�0

. (5)

We further assume that the singlet � is inert, i.e. does
not develop a vev. There thus remains an exact Z2 sym-
metry, under which only � and L are odd, which ensures
that the lightest state of the spectrum is stable. For def-
initeness, we choose r < 0 and mL > m�0 , so that the
scalar component of �, �0, is a DM candidate [59]. As
we will argue in the following sections, the above frame-
work accommodates the gµ�2 and b ! sµ+µ� anomalies
simultaneously, without conflicting with current collider
constraints, only in particular regions of parameter space,
where the DM candidate �0 is around the weak scale and
relatively lighter than the other dark sector states,

m�0 . m�0 ⇠ mQ ⇠ mZ0 , (6)

while the dark lepton mass mL may be either close to
the DM state or well above it. We do not address the
dynamical origin of such a spectrum, but simply achieve
it by tuning the bare mass squared of � and rh�i. We
use 1/� as a measure of this tuning, which remains mild
in the parameter region of interest. Besides addressing
the anomalies, this small hierarchy of the spectrum also

TABLE I: New fields and their quantum numbers. All SM
fields are neutral under U(1)X .

spin SU(3)c SU(2)L U(1)Y U(1)X

L, Lc 1/2 1 2 �1/2 1
Q, Qc 1/2 3 2 1/6 �2

� 0 1 1 0 2
� 0 1 1 0 �1

ensures that the lightest dark-sector state is a spinless
SM-singlet DM candidate.
We now turn to the new interactions in Eq. (3). The

first term describes kinetic mixing between the hyper-
charge U(1)Y and the dark U(1)X field tensors, which is
strongly constrained by electroweak precision measure-
ments [20] and collider searches [21]. The second term,
the scalar Higgs portal, is bounded by direct detection
and collider searches [22]. Since both interactions are
not relevant to our discussion, we set ✏ = ��H = 0 [60].
The last two terms mediate interactions between the

dark sector and the SM. The Z 0 couples with strength g0

to the current j⇢ ⌘ j⇢0 + �j⇢, where j⇢0 is the tree-level
U(1)X current and

�j⇢ ⌘
X

f,f 0

�ff 0(q2)

1 + �ff 0

�
f̄L�

⇢f 0
L

�
+ h.c. (7)

is the part of the current induced after U(1)X breaking.
Here q2 is the squared Z 0 momentum, f, f 0 = `, ⌫`, u, d,
and �ff 0 = 1 for f = f 0 and zero otherwise. SM quarks
mix with dark quarks Q after U(1)X breaking, while SM
leptons and dark leptons L do not mix due to the di↵erent
charge assignments under U(1)X (see TAB. I). The Z 0

coupling to SM quarks thus arises at tree level through
the mixing w(q̄Q)h�i + h.c.. It is q2-independent and
isospin universal at leading order. In contrast, the Z 0

coupling to leptons is radiatively induced at the one-loop
level through the exchange of dark-sector fields via the
interaction y(l̄L)�+h.c., see FIG. 1. In the limit m`,⌫` ⌧
m�,L, which we envisage here, the lepton form factors
satisfy �``(q2) ' �⌫`⌫`(q

2), since the isospin components
of L = (L0, L�) are mass-degenerate at leading order.
Calculating the one-loop diagrams of FIG. 1 in the limit
q2 = 0 yields

�``(0) =
|y|2
32⇡2

FZ0(⌧, �) , (8)

where ⌧ ⌘ m2
L/m

2
�0

and the loop function FZ0 is given
in Eq. (A2).
Notice that FZ0(⌧, �) vanishes in the limit of unbroken

U(1)X , � ! 0, where scalar and pseudo-scalar compo-
nents are degenerate. This stems from the fact that the
form factor �``(0) formally arises from the local operator
(�⇤D⇢�)(¯̀L�⇢`L) + h.c. after U(1)X breaking, induced
by the one-loop diagram in FIG. 1 with two insertions of
the vev h�i.

vector like
scalars

b→sℓℓ

(g-2)μ

4

Since the Z 0 coupling to muons is small, cf. Eq. (8), this
bound is fulfilled only for a light Z 0 boson, as well as
a large mass splitting �. In a spectrum with moderate
tuning, � . 10, this leads to

mZ0 . 110� 270GeV

✓
g0

3

◆✓
|y|
3

◆2

, (17)

where the two mass values correspond to ⌧ ' � and ⌧ ⇠
1, respectively. For mZ0 around the weak scale, LHCb
anomalies thus require rather large couplings y and g0,
while a perturbative upper bound of mZ0 . 8.5TeV (⌧ '
�) or mZ0 . 20TeV (⌧ ' 1) applies for g0 = y = 4⇡. We
discuss collider constraints on such a Z 0 in SEC. IV. To
summarize, assuming perturbative couplings g0 ' 3 and a
mild tuning of the dark spectrum, � ' 10, both the gµ�2
and LHCb anomalies are accommodated for parameters
values interpolating between the two limiting cases

1) ⌧ ' � , |y| ' 6 , g0 ' 3 , � ' 10 ,

m�0 ' 100GeV, mZ0 ' 300GeV, (18)

2) ⌧ ' 1 , |y| ' 2 , g0 ' 3 , � ' 10 ,

m�0 ' 70GeV, mZ0 ' 150GeV. (19)

IV. COLLIDER CONSTRAINTS

We now analyse the relevant constraints on our model
from EW precision measurements at the LEP experi-
ments, as well as from the first LHC run. First of all,
our model implies sizeable radiative corrections to the
Zµµ̄, Z⌫µ⌫̄µ and W+µ⌫̄µ couplings from the one-loop
diagram in FIG. 2. The EW gauge couplings are shifted
by (V = W,Z)

�g

gSM
=

|y|2
32⇡2

FV (⌧, rq) , (20)

where the one-loop function FV is found in Eq. (A4)
and rq ⌘ q2/m2

L. The vertex correction is m2
V /m

2
L-

suppressed at the V pole, q2 = m2
V . While the QED part

of the couplings at zero momentum is protected by gauge
invariance, the weak isospin part is not corrected at one-
loop level, since the SM Higgs doublet does not directly
couple to the dark sector [63]. Despite this paramet-
ric suppression, the lightness of the dark-sector states,
m�0 ' 100GeV and mL ' 100� 400GeV, together with
a relatively large Yukawa coupling, y & 2, typically shifts
the SM gauge couplings by one to a few permil, which
is in mild tension (⇠ 1� � 3�) with LEP data [6]. This
tension may be relieved in a more sophisticated version
of the minimal model considered here.

Our model also predicts a series of signatures at hadron
colliders, most notably muon pair production through a
resonant Z 0, as well as signals of large missing energy
with muon pairs and/or jets. Current LHC limits on
a Z 0 resonance with SM-like couplings to fermions are

around mZ0 & 3TeV [29, 30]. However, Z 0 production
in our model only occurs through sea-quark (bs̄ + sb̄)
annihilations and is thus strongly suppressed. On the
other hand, the Z 0 dominantly decays into muon pairs
and neutrinos. Given the conditions Eqs. (9) and (16)
on the Z 0 couplings to SM fermions and for Z 0 masses
that accommodate the LHCb anomalies as in Eq. (17),
the branching ratios to leptons are both ⇠ 40� 50%, de-
pending on the value of the Yukawa coupling [64]. We
thus find the cross section for Z 0 production with decay
into µ+µ� to be of O(fb), which is an order of magni-
tude below current limits at the 8TeV LHC. The next-to-
leading Z 0 branching ratio is µ+µ��0�0, ranging from 2
to 10% for large Yukawa couplings. Along the same lines,
mono-jet signatures from the direct production of a DM
pair in association with a hard jet from initial state ra-
diation (ISR) lie at least one order of magnitude below
the current LHC sensitivity [31, 32].
The EW production of L+L� pairs leads to a signa-

ture with di-muons and missing energy, which resembles
the one used in searches for smuons, the supersymmetric
partners of the muon. The only di↵erence with our signal
lies in the spin of the produced particles. However, it was
shown in REF. [33] that results for slepton searches in
simplified models could safely be applied to the produc-
tion of fermion pairs decaying into a fermion and a scalar.
We use SmodelS [34], a tool designed to decompose the
signal of any NP model into simplified topologies, and
compare the predictions to the exclusion limits set by
the ATLAS and CMS slepton searches [35, 36]. We find
that the 8TeV LHC sets strong constraints on the mass
of L�, even stronger than for smuons, because L+L�

pair production cross sections are significantly larger.
Dark-lepton masses mL . 450GeV are excluded, except
if the mass splitting with the DM is su�ciently small,
mL �m�0 . 60GeV. In this region, the di-muon signal
is overwhelmed with SM background. Similar searches
at LEP2 lead to the lower bound of mL & 100GeV [37].

V. DARK MATTER RELIC ABUNDANCE

The DM candidate in our model is the lightest com-
ponent of the scalar �, which we assume to be �0. It
is largely leptophilic, as follows from the charge assign-
ments in TAB. I. For a spectrum as in Eq. (6), DM
annihilation proceeds dominantly into µ+µ� and ⌫µ⌫̄µ
through t�channel exchange of L� and L0, respectively,
as shown in FIG. 4. Coannihilation processes with the
other dark states are negligible for ⌧ ' � � 1, while anni-
hilation into Z 0 pairs is negligible as long as mZ0 & m�0 .
The resulting annihilation cross section is d�wave sup-
pressed in the chiral limit, �l̄lv ⇠ v4 [38]. Adding up
final-state muons and neutrinos, the thermal average
is [65]

h�l̄lvi =
ad

x2m2
�0

+ O(x�3) , ad ⌘ |y|4
2⇡(1 + ⌧)4

, (21)
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FIG. 1: Dominant one-loop contribution to the operator
(�⇤D⇢�)(µ̄L�

⇢µL) yielding �µµ(0) 6= 0. The Z0 line is under-
stood to be attached wherever possible. A similar diagram
with µ ! ⌫µ and L� ! L0 induces the Z0 coupling to neu-
trinos.

As of the flavor structure of U(1)X interactions, we
follow a phenomenological approach and introduce only
interactions that are required to explain the observed
anomalies. We thus assume that the dark sector only cou-
ples to the left-handed fermions µL, ⌫µL and b̄LsL+s̄LbL.
The magnitude of the Z 0b̄LsL coupling is experimentally
constrained from Bs meson mixing. Allowing for a NP
contribution of O(10%) to the mass di↵erence �MBs

leads to the bound [9, 23][61]
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We do not address here the origin of these peculiar flavor
structures in the lepton and quark sectors. We acknowl-
edge, however, that explicit flavor completions of this
model could lead to correlated e↵ects in other meson-
physics and leptonic observables [14, 24–27].

III. EXPLAINING MUON-RELATED
ANOMALIES

New contributions to the muon anomalous magnetic
moment are induced at the one-loop level through the
diagram in FIG. 2, yielding
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(1+�)Fg(⌧)

. The

loop function Fg is given in Eq. (A1). For a degenerate
dark spectrum, we have Fg(1) = 1/12 and A(1, 0) = 1,
so that the discrepancy �aµ in Eq. (1) is accommodated
for m�0 ' 45|y|GeV. As we will see, the LHCb anomalies
typically require a significant scalar versus pseudo-scalar
mass splitting � � 1, with a dark-lepton versus DM mass
splitting roughly in the interval ⌧ 2 [1, �]. Eq. (1) is then
accommodated for m�0 ' 32|y|(1 + 2/�)GeV (⌧ ' 1) or
m�0 ' 55|y|/

p
�GeV (⌧ ' � � 1). (See APP. A for

details.)
Consider now the b ! sµ+µ� anomalies. At the

b�quark mass scale, the NP amplitude is described by
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FIG. 2: One-loop NP contribution to gµ � 2 and the Z cou-
pling to muons. The photon � is to be attached to L�, and
the Z boson to either of the fermion lines.
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CiOi + h.c. , (11)

where ↵ and GF are, respectively, the fine-structure and
Fermi constants, Vij are CKM matrix elements, and the
sum runs over the operators (` = e, µ)

O`
9 ⌘ b̄�⇢(1� �5)s ¯̀�⇢` , (12)

O`
10 ⌘ b̄�⇢(1� �5)s ¯̀�⇢�5` . (13)

A global fit to leptonic, semi-leptonic and radiative B
decays favors e↵ective couplings to muons [16, 28]

Cµ
9 = �Cµ

10 ' �0.5 (14)

and negligible electron coe�cients Ce
9,10 ' 0 [62]. In our

model, Cµ
9,10 are induced at the one-loop level through

the diagram in FIG. 3, which gives
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p
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⇤
ts|)]1/2 ' 50TeV is the

scale of the SM contributions. Accommodating the b !
sµ+µ� anomalies as in Eq. (14), while respecting the
�MBs bound from Eq. (9), yields a lower bound on the
muon form factor,
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trinos.

As of the flavor structure of U(1)X interactions, we
follow a phenomenological approach and introduce only
interactions that are required to explain the observed
anomalies. We thus assume that the dark sector only cou-
ples to the left-handed fermions µL, ⌫µL and b̄LsL+s̄LbL.
The magnitude of the Z 0b̄LsL coupling is experimentally
constrained from Bs meson mixing. Allowing for a NP
contribution of O(10%) to the mass di↵erence �MBs

leads to the bound [9, 23][61]
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We do not address here the origin of these peculiar flavor
structures in the lepton and quark sectors. We acknowl-
edge, however, that explicit flavor completions of this
model could lead to correlated e↵ects in other meson-
physics and leptonic observables [14, 24–27].
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Fermi constants, Vij are CKM matrix elements, and the
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stood to be attached wherever possible. A similar diagram
with µ ! ⌫µ and L� ! L0 induces the Z0 coupling to neu-
trinos.

As of the flavor structure of U(1)X interactions, we
follow a phenomenological approach and introduce only
interactions that are required to explain the observed
anomalies. We thus assume that the dark sector only cou-
ples to the left-handed fermions µL, ⌫µL and b̄LsL+s̄LbL.
The magnitude of the Z 0b̄LsL coupling is experimentally
constrained from Bs meson mixing. Allowing for a NP
contribution of O(10%) to the mass di↵erence �MBs

leads to the bound [9, 23][61]
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structures in the lepton and quark sectors. We acknowl-
edge, however, that explicit flavor completions of this
model could lead to correlated e↵ects in other meson-
physics and leptonic observables [14, 24–27].
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Fermi constants, Vij are CKM matrix elements, and the
sum runs over the operators (` = e, µ)

O`
9 ⌘ b̄�⇢(1� �5)s ¯̀�⇢` , (12)

O`
10 ⌘ b̄�⇢(1� �5)s ¯̀�⇢�5` . (13)

A global fit to leptonic, semi-leptonic and radiative B
decays favors e↵ective couplings to muons [16, 28]

Cµ
9 = �Cµ

10 ' �0.5 (14)

and negligible electron coe�cients Ce
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II. A MINIMAL MODEL

We consider the extension of the SM by a new (dark)
sector, consisting of heavy leptons L, Lc and quarks Q,
Qc with vector-like gauge couplings, as well as two com-
plex scalars, � and �. Interactions with the SM are medi-
ated by a new gauge boson Z 0 associated with an abelian
U(1)X symmetry, under which only the particles of the
dark sector are charged. The quantum numbers of all
new particles are listed in TAB. I [58]. Since no chi-
ral fermion carries U(1)X charge, the model is anomaly
free [19]. Notice that our choice of U(1)X charges for-
bids tree-level Z 0 couplings with SM leptons. This is
crucial in order to simultaneously address the gµ� 2 and
b ! sµ+µ� anomalies with NP around the weak scale.

Besides canonical kinetic terms, the relevant new in-
teractions in the Lagrangian are

LNP � ✏Bµ⌫X
µ⌫ � ��H |�|2|H|2 � ��H |�|2|H|2

�V (�,�)�
⇥
y (l̄L)�+ w (q̄Q)�+ h.c.

⇤
, (3)

where

V (�,�) ⌘ (r��2 + h.c.) + ��|�|4 + ��|�|4 , (4)

and lT = (⌫`L , `L)
T , qT = (uL, dL)

T and H are the SM
lepton, quark and Higgs doublets, while Bµ⌫ and Xµ⌫ are
the hypercharge and U(1)X field strength tensors, respec-
tively. The U(1)X symmetry is spontaneously broken by
the vacuum expectation value (vev) of �, leading to a Z 0

mass of mZ0 = 2g0h�i. It furthermore lifts the mass de-
generacy between the components of � = (�0 + i�0)/

p
2

by

� ⌘
m2

�0

m2
�0

� 1 = �2
rh�i
m2

�0

. (5)

We further assume that the singlet � is inert, i.e. does
not develop a vev. There thus remains an exact Z2 sym-
metry, under which only � and L are odd, which ensures
that the lightest state of the spectrum is stable. For def-
initeness, we choose r < 0 and mL > m�0 , so that the
scalar component of �, �0, is a DM candidate [59]. As
we will argue in the following sections, the above frame-
work accommodates the gµ�2 and b ! sµ+µ� anomalies
simultaneously, without conflicting with current collider
constraints, only in particular regions of parameter space,
where the DM candidate �0 is around the weak scale and
relatively lighter than the other dark sector states,

m�0 . m�0 ⇠ mQ ⇠ mZ0 , (6)

while the dark lepton mass mL may be either close to
the DM state or well above it. We do not address the
dynamical origin of such a spectrum, but simply achieve
it by tuning the bare mass squared of � and rh�i. We
use 1/� as a measure of this tuning, which remains mild
in the parameter region of interest. Besides addressing
the anomalies, this small hierarchy of the spectrum also

TABLE I: New fields and their quantum numbers. All SM
fields are neutral under U(1)X .

spin SU(3)c SU(2)L U(1)Y U(1)X

L, Lc 1/2 1 2 �1/2 1
Q, Qc 1/2 3 2 1/6 �2

� 0 1 1 0 2
� 0 1 1 0 �1

ensures that the lightest dark-sector state is a spinless
SM-singlet DM candidate.
We now turn to the new interactions in Eq. (3). The

first term describes kinetic mixing between the hyper-
charge U(1)Y and the dark U(1)X field tensors, which is
strongly constrained by electroweak precision measure-
ments [20] and collider searches [21]. The second term,
the scalar Higgs portal, is bounded by direct detection
and collider searches [22]. Since both interactions are
not relevant to our discussion, we set ✏ = ��H = 0 [60].
The last two terms mediate interactions between the

dark sector and the SM. The Z 0 couples with strength g0

to the current j⇢ ⌘ j⇢0 + �j⇢, where j⇢0 is the tree-level
U(1)X current and

�j⇢ ⌘
X

f,f 0

�ff 0(q2)

1 + �ff 0

�
f̄L�

⇢f 0
L

�
+ h.c. (7)

is the part of the current induced after U(1)X breaking.
Here q2 is the squared Z 0 momentum, f, f 0 = `, ⌫`, u, d,
and �ff 0 = 1 for f = f 0 and zero otherwise. SM quarks
mix with dark quarks Q after U(1)X breaking, while SM
leptons and dark leptons L do not mix due to the di↵erent
charge assignments under U(1)X (see TAB. I). The Z 0

coupling to SM quarks thus arises at tree level through
the mixing w(q̄Q)h�i + h.c.. It is q2-independent and
isospin universal at leading order. In contrast, the Z 0

coupling to leptons is radiatively induced at the one-loop
level through the exchange of dark-sector fields via the
interaction y(l̄L)�+h.c., see FIG. 1. In the limit m`,⌫` ⌧
m�,L, which we envisage here, the lepton form factors
satisfy �``(q2) ' �⌫`⌫`(q

2), since the isospin components
of L = (L0, L�) are mass-degenerate at leading order.
Calculating the one-loop diagrams of FIG. 1 in the limit
q2 = 0 yields

�``(0) =
|y|2
32⇡2

FZ0(⌧, �) , (8)

where ⌧ ⌘ m2
L/m

2
�0

and the loop function FZ0 is given
in Eq. (A2).
Notice that FZ0(⌧, �) vanishes in the limit of unbroken

U(1)X , � ! 0, where scalar and pseudo-scalar compo-
nents are degenerate. This stems from the fact that the
form factor �``(0) formally arises from the local operator
(�⇤D⇢�)(¯̀L�⇢`L) + h.c. after U(1)X breaking, induced
by the one-loop diagram in FIG. 1 with two insertions of
the vev h�i.

vector like
scalars

b→sℓℓ

(g-2)μ
valid dark matter 

candidate
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Since the Z 0 coupling to muons is small, cf. Eq. (8), this
bound is fulfilled only for a light Z 0 boson, as well as
a large mass splitting �. In a spectrum with moderate
tuning, � . 10, this leads to

mZ0 . 110� 270GeV

✓
g0

3

◆✓
|y|
3

◆2

, (17)

where the two mass values correspond to ⌧ ' � and ⌧ ⇠
1, respectively. For mZ0 around the weak scale, LHCb
anomalies thus require rather large couplings y and g0,
while a perturbative upper bound of mZ0 . 8.5TeV (⌧ '
�) or mZ0 . 20TeV (⌧ ' 1) applies for g0 = y = 4⇡. We
discuss collider constraints on such a Z 0 in SEC. IV. To
summarize, assuming perturbative couplings g0 ' 3 and a
mild tuning of the dark spectrum, � ' 10, both the gµ�2
and LHCb anomalies are accommodated for parameters
values interpolating between the two limiting cases

1) ⌧ ' � , |y| ' 6 , g0 ' 3 , � ' 10 ,

m�0 ' 100GeV, mZ0 ' 300GeV, (18)

2) ⌧ ' 1 , |y| ' 2 , g0 ' 3 , � ' 10 ,

m�0 ' 70GeV, mZ0 ' 150GeV. (19)

IV. COLLIDER CONSTRAINTS

We now analyse the relevant constraints on our model
from EW precision measurements at the LEP experi-
ments, as well as from the first LHC run. First of all,
our model implies sizeable radiative corrections to the
Zµµ̄, Z⌫µ⌫̄µ and W+µ⌫̄µ couplings from the one-loop
diagram in FIG. 2. The EW gauge couplings are shifted
by (V = W,Z)

�g

gSM
=

|y|2
32⇡2

FV (⌧, rq) , (20)

where the one-loop function FV is found in Eq. (A4)
and rq ⌘ q2/m2

L. The vertex correction is m2
V /m

2
L-

suppressed at the V pole, q2 = m2
V . While the QED part

of the couplings at zero momentum is protected by gauge
invariance, the weak isospin part is not corrected at one-
loop level, since the SM Higgs doublet does not directly
couple to the dark sector [63]. Despite this paramet-
ric suppression, the lightness of the dark-sector states,
m�0 ' 100GeV and mL ' 100� 400GeV, together with
a relatively large Yukawa coupling, y & 2, typically shifts
the SM gauge couplings by one to a few permil, which
is in mild tension (⇠ 1� � 3�) with LEP data [6]. This
tension may be relieved in a more sophisticated version
of the minimal model considered here.

Our model also predicts a series of signatures at hadron
colliders, most notably muon pair production through a
resonant Z 0, as well as signals of large missing energy
with muon pairs and/or jets. Current LHC limits on
a Z 0 resonance with SM-like couplings to fermions are

around mZ0 & 3TeV [29, 30]. However, Z 0 production
in our model only occurs through sea-quark (bs̄ + sb̄)
annihilations and is thus strongly suppressed. On the
other hand, the Z 0 dominantly decays into muon pairs
and neutrinos. Given the conditions Eqs. (9) and (16)
on the Z 0 couplings to SM fermions and for Z 0 masses
that accommodate the LHCb anomalies as in Eq. (17),
the branching ratios to leptons are both ⇠ 40� 50%, de-
pending on the value of the Yukawa coupling [64]. We
thus find the cross section for Z 0 production with decay
into µ+µ� to be of O(fb), which is an order of magni-
tude below current limits at the 8TeV LHC. The next-to-
leading Z 0 branching ratio is µ+µ��0�0, ranging from 2
to 10% for large Yukawa couplings. Along the same lines,
mono-jet signatures from the direct production of a DM
pair in association with a hard jet from initial state ra-
diation (ISR) lie at least one order of magnitude below
the current LHC sensitivity [31, 32].
The EW production of L+L� pairs leads to a signa-

ture with di-muons and missing energy, which resembles
the one used in searches for smuons, the supersymmetric
partners of the muon. The only di↵erence with our signal
lies in the spin of the produced particles. However, it was
shown in REF. [33] that results for slepton searches in
simplified models could safely be applied to the produc-
tion of fermion pairs decaying into a fermion and a scalar.
We use SmodelS [34], a tool designed to decompose the
signal of any NP model into simplified topologies, and
compare the predictions to the exclusion limits set by
the ATLAS and CMS slepton searches [35, 36]. We find
that the 8TeV LHC sets strong constraints on the mass
of L�, even stronger than for smuons, because L+L�

pair production cross sections are significantly larger.
Dark-lepton masses mL . 450GeV are excluded, except
if the mass splitting with the DM is su�ciently small,
mL �m�0 . 60GeV. In this region, the di-muon signal
is overwhelmed with SM background. Similar searches
at LEP2 lead to the lower bound of mL & 100GeV [37].

V. DARK MATTER RELIC ABUNDANCE

The DM candidate in our model is the lightest com-
ponent of the scalar �, which we assume to be �0. It
is largely leptophilic, as follows from the charge assign-
ments in TAB. I. For a spectrum as in Eq. (6), DM
annihilation proceeds dominantly into µ+µ� and ⌫µ⌫̄µ
through t�channel exchange of L� and L0, respectively,
as shown in FIG. 4. Coannihilation processes with the
other dark states are negligible for ⌧ ' � � 1, while anni-
hilation into Z 0 pairs is negligible as long as mZ0 & m�0 .
The resulting annihilation cross section is d�wave sup-
pressed in the chiral limit, �l̄lv ⇠ v4 [38]. Adding up
final-state muons and neutrinos, the thermal average
is [65]

h�l̄lvi =
ad

x2m2
�0

+ O(x�3) , ad ⌘ |y|4
2⇡(1 + ⌧)4

, (21)
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⌦� rapidly decreases when the DM mass increases above
m�0 & 200GeV. Satisfying �aµ with heavier DM masses
requires a lighter dark lepton L or, equivalently, smaller
values of ⌧ , leading to a significantly stronger DM annihi-
lation into muon(-neutrino) pairs, see Eq. (21). Secondly,
when mZ0 . m�0 , the process �0�0 ! Z 0Z 0 e�ciently
depletes the DM relic abundance (green points in FIG. 5).
Moreover, when mL ' m�0 , corresponding to ⌧ ' 1,
coannihilation processes with dark leptons (see FIG. 4)
can also contribute to significantly reducing the DM den-
sity (magenta points in FIG. 5). This is particularly
pronounced when Z 0 can be produced in the final state
via the coannihilation processes �0L

±(L0) ! Z 0µ±(⌫µ)
(cyan points in FIG. 5).

The two regions where the relic density is in agree-
ment with the observed value closely resemble the param-
eter limits favored by the muon anomalies from Eqs. (18)
and (19), respectively. These are

1) The heavy lepton scenario. In this region, m�0 ⇡
120 � 250GeV and mL & 450GeV, corresponding
to ⌧ � 1, because of collider constraints on di-
lepton plus missing energy signals. As a result, the
Yukawa coupling is strong, |y| & 6, to ensure a large
enough DM annihilation rate into lepton pairs.

2) The compressed scenario. This second region cor-
responds to m�0 ⇡ 50 � 80GeV and mL ⇡ 100 �
120GeV, i.e. to ⌧ ' 1. It evades collider con-
straints because of the relatively small gap between
DM and dark-lepton masses. Since DM annihila-
tion is larger for ⌧ ' 1, see Eq. (21), a smaller
Yukawa coupling is needed to ensure enough DM
annihilation. However, as the muon anomalies re-
quest |y| & 2, it is more challenging to obtain the
observed relic density ⌦obs

� h2 ⇠ 0.1 in the com-
pressed scenario.

In FIG. 6, we illustrate the range of y needed to obtain
various amounts of DM relic abundance ⌦�, as a function
of the DM mass, for the case of dominant DM annihila-
tion into lepton pairs, �0�0 ! l̄l.

VI. DARK MATTER DETECTION

The DM candidate in our model is dominantly lep-
tophilic, which makes direct detection very challenging.
Furthermore, since Z and Higgs boson couplings to �0

pairs are absent at tree level and loop-induced vector in-
teractions are momentum-suppressed, any signal of spin-
independent DM-nucleus scattering lies below the sensi-
tivity of current direct detection experiments [68].

On the other hand, VIB in DM annihilation, discussed
in SEC. V, plays an important role for indirect detection
today. The suppression of tree-level DM annihilation into
di-lepton states, �l̄lv ⇠ v4, is even stronger than during
freeze-out, as velocities today are around vhalo ⇠ 10�3 in
our galactic neighborhood. Photons from VIB are thus
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FIG. 5: DM relic density ⌦
¯ll
�h

2 as a function of the DM mass,
m�0 , as predicted by the muon-related collider anomalies.
Light gray points: excluded by 8TeV LHC and LEP2 con-
straints on di-lepton plus missing energy signals from L+L�

production Dark gray points: DM annihilation dominated by
�
0

�
0

! µ+µ�, ⌫µ⌫̄µ. Green points: additional contributions
(⇠ 10% and more) from �

0

�
0

! Z0Z0. Magenta and cyan
points: co-annihilation through LL ! ll and �

0

L ! Z0l, re-
spectively, accounts for more than ⇠ 10% of the total h�vi.
Red band: 3� range of ⌦obs
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the dominant signal in gamma-ray searches of indirect
detection experiments. The annihilation cross sections
due to VIB in our two scenarios from Eqs. (18) and (19),
integrated over the photon energy spectrum, are

1) h�µµ̄�vi ' 3⇥ 10�27 cm3/s and

2) h�µµ̄�vi ' 7⇥ 10�25 cm3/s , (29)

respectively. The smaller cross section in the heavy
lepton scenario 1) is mainly due to the suppression
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Field SU(3)C ⇥ SU(2)L ⇥ U(1)Y U(1)B0 ⇥ U(1)L0 ⇥ U(1)�

QL (3, 2, 16) (13 , 0, 0)

UR (3, 1, 23) (13 , 0, 0)

DR (3, 1,�1
3) (13 , 0, 0)

LL (1, 2,�1
2) (0, 1, 0)

ER (1, 1,�1) (0, 1, 0)

�H (1, 2, 12) (0, 0, 0)

 (1, 4,�3
2) (0, 0, 1)

�q (3, 3, 43) (�1
3 , 0, 1)

�` (1, 3, 2) (0,�1, 1)

Table 2: Quantum numbers of the Standard Model fields and new fields under the SM

gauge symmetry (second column), and under the accidental global symmetries of the theory

(third column).

(1, 4,±1/2), the LP is not the neutral one. We conclude that, since we are demanding a

neutral LP, the LP can only be contained in the fermion field  with quantum numbers

(1, 4,±3
2). Imposing condition (e) on the field �q we are left with just two models:

• Model A.  ⇠ (1, 4,+3
2),�q ⇠ (3, 3, 43), �` ⇠ (1, 3, 2) with Yukawa interactions as in

(2.1):

↵q
i  Q

i
L�q + ↵`

i  L
i
L�` + h.c. (2.5)

• Model B.  ⇠ (1, 4,�3
2),�q ⇠ (3, 3,�5

3), �` ⇠ (1, 3, 2) with Yukawa interactions as

in (2.2):

↵q
i  Q

i
L�q + ↵`

i  
c
Li
L�` + h.c. (2.6)

The two models have very similar implications for the phenomenology that we are interested

in here. Henceforth, we discuss only Model A.

The quantum numbers of the SM and NP fields under the gauge and global symmetries

(to be discussed below) are summarised in Tab. 2 and the most general renormalizable

lagrangian is given by

L = LSM + L� + L + Lyuk, (2.7)

L� = (Dµ�`)
†Dµ�` + (Dµ�q)

†Dµ�q � V (�H ,�q,�`), (2.8)

L = i Dµ�µ �M   , (2.9)

Llin = ↵q
i  RQ

i
L�q + ↵`

i  RL
i
L�` + ↵q⇤

i Q
i
L R�

†
q + ↵`⇤

i L
i
L R�

†
`. (2.10)

See Appendix A for the explicit decompositions of the operators in terms of components

of the SU(2)L multiplets. Let us now analyse the accidental global symmetries of this

lagrangian. Before considering the breaking coming from Llin it is easy to show that the

Lagrangian is invariant under a global U(1)7. Indeed, the SM alone has accidental global

symmetry U(1)B ⇥U(1)e ⇥U(1)µ ⇥U(1)⌧ , while the gauge kinetic terms of the new BSM
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Figure 1: Diagram contributing to b ! sµµ

3.1.1 Semileptonic four-fermion operators

The process b ! s``, important for the LHCb B meson anomalies, is induced at loop

level by the diagram in Fig. 13. The SU(2)L structure of the NP-induced semileptonic

four-fermion interaction can be derived from the discussion in Appendix A, using the

lagrangian (Eqn. A.6) written explicitly in terms of SU(2)L components. The resulting

e↵ective NP lagrangian is

Leff � K(xq, x`)

M2
 

↵q⇤
i ↵q

j↵
`⇤
m↵`

n

64⇡2

⇣
Q

i
L�

µQj
L

⌘ �
L
m
L �µL

n
L

�
+

5

9

⇣
Q

i
L�

µ~⌧Qj
L

⌘
·
�
L
m
L �µ~⌧L

n
L

��
,

(3.1)

with xq ⌘
M2

q

M2
 
and x` ⌘ M2

`
M2
 
. The loop function K(xq, x`) can be obtained by the following

definitions;

K(x) ⌘ 1� x+ x2 log x

(x� 1)2
,

K(x, y) ⌘ K(x)�K(y)

x� y
.

The e↵ective hamiltonian relevant to b ! s`` transitions is

He↵ = �4GFp
2

(V ⇤
tsVtb)

X

i

C`
i (µ)O`

i (µ) , (3.2)

where O`
i are a basis of SU(3)C⇥U(1)Q-invariant dimension-six operators giving rise to the

flavour-changing transition. The superscript ` denotes the lepton flavour in the final state

(` 2 {e, µ, ⌧}), and the important operators for our process, O`
i , are given in a standard

basis by

O`(0)
9 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵`) , (3.3)

O`(0)
10 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵�5`).

3There are also Z and photon penguin diagrams which contribute, with a NP loop connecting the quarks

and joining to the leptons via a Z/� propagator. These penguin diagrams are discussed in Appendix B and

are found to be very suppressed relative to both the SM contribution and the diagram in Fig. 1, and hence

are neglected here.
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Figure 2: Diagrams contributing to Bs mixing

Comparing equations 3.1 and 3.2 we find the NP contribution to the Wilson coe�cients

relevant to b ! sµµ is

CµNP
9 = �CµNP

10 =

✓
4GFp

2
V ⇤
tsVtb

↵

4⇡

◆�1 7

576⇡2

K(xq, x`)

M2
 

↵q⇤
2 ↵q

3

���↵`
2

���
2
. (3.4)

The most recent best fit ranges on this combination of Wilson coe�cients are taken from

[49] and are given by

CµNP
9 = �CµNP

10 2 [�0.71,�0.35] (at 1�), (3.5)

CµNP
9 = �CµNP

10 2 [�0.91,�0.18] (at 2�). (3.6)

3.1.2 Four-quark operators

Interactions between four quarks are induced at loop level by diagrams like those in Fig.

2. These interactions can lead to meson mixing; in particular, if the process b ! sµµ

is present, then inevitably Bs mixing must also be induced. This process can therefore

introduce important constraints on the masses and couplings of the new particles. The

four quark e↵ective operator induced by the NP is

Leff � K 0(xq)

M2
 

↵q⇤
i ↵q

j↵
q⇤
m↵q

n

128⇡2

⇣
Q

i
L�

µQj
L

⌘ �
Q

m
L �µQ

n
L

�
+

5

9

⇣
Q

i
L�

µ~⌧Qj
L

⌘
·
�
Q

m
L �µ~⌧Q

n
L

��
,

(3.7)

where K 0(x) is the first derivative of K(x). The SU(2)L structure of the e↵ective operator

is similar to that of Eqn. 3.1 and can again be derived from the discussion in Appendix A.

Projecting the quark doublet along the down components we find that for Bs mixing the

relevant operator is

Leff � 7

576⇡2

K 0(xq)

M2
 

�
↵q⇤
2 ↵q

3

�2
(sL�

µbL)(sL�µbL) + h.c.. (3.8)

The Wilson coe�cient is easily extracted at high energy µ = ⇤ where the BSM particles

are dynamical fields. We fix ⇤ = 1 TeV in what follows. At this energy we have

Cbs
1 (⇤) =

7

576⇡2

K 0(xq)

M2
 

�
↵q⇤
2 ↵q

3

�2
(3.9)
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Table 2: Quantum numbers of the Standard Model fields and new fields under the SM

gauge symmetry (second column), and under the accidental global symmetries of the theory

(third column).

(1, 4,±1/2), the LP is not the neutral one. We conclude that, since we are demanding a

neutral LP, the LP can only be contained in the fermion field  with quantum numbers

(1, 4,±3
2). Imposing condition (e) on the field �q we are left with just two models:
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The two models have very similar implications for the phenomenology that we are interested
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lagrangian. Before considering the breaking coming from Llin it is easy to show that the
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. The loop function K(xq, x`) can be obtained by the following

definitions;
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.
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where O`
i are a basis of SU(3)C⇥U(1)Q-invariant dimension-six operators giving rise to the

flavour-changing transition. The superscript ` denotes the lepton flavour in the final state

(` 2 {e, µ, ⌧}), and the important operators for our process, O`
i , are given in a standard

basis by
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9 =
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3There are also Z and photon penguin diagrams which contribute, with a NP loop connecting the quarks

and joining to the leptons via a Z/� propagator. These penguin diagrams are discussed in Appendix B and

are found to be very suppressed relative to both the SM contribution and the diagram in Fig. 1, and hence

are neglected here.
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Figure 7: Parameter space plot for ↵`
2 = 1.2, and with the masses of the three fields given

by M = M,M` = M + 200 GeV,Mq = M + 700 GeV. For this value of ↵`
2, it is not

possible to explain the anomalous magnetic moment of the muon whilst fitting the other

constraints.

a flavour symmetry and (ii) a set of irreducible symmetry-breaking terms. The flavour

symmetry group GF � GK has to be broken in order to reproduce the observed pattern of

fermion masses and mixing. In order to do that a set of symmetry-breaking spurions are

introduced to formally restore the symmetry GF .

We will now consider 3 explicit examples and we will focus on the quark sector.

1. GF = U(3)3q

This is the case of Minimal Flavour Violation [72]. The spurion fields are the three

Yukawa couplings

YU ⇠ (3, 3, 1) YD ⇠ (3, 1, 3), (4.3)

where the quantum numbers are specified with respect to the direct product of groups

SU(3)QL ⇥ SU(3)UR ⇥ SU(3)DR .

2. GF = U(2)3q

This is the flavour symmetry of the quark sector if only the Yukawa couplings yt and

yb are non-vanishing. So to a good level this is an approximate symmetry of the SM.

Recent works [73–75] considered the following set of irreducible spurions ;

�u ⇠ (2, 2, 1), �d ⇠ (2, 1, 2), V ⇠ (2, 1, 1), (4.4)
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the typical values of the parameters needed in our model, in Fig. 7 we show parameter space

regions assuming that ↵`
2 = 1.2 while parametrizing the masses in terms of one single scale

M assuming the following hierarchy M = M, M` = M + 200 GeV, Mq = M + 700 GeV.

In this way we are left with two parameters only (M and ↵q
2↵

q
3). The B ! Xs� allowed

region is not shown because it yields weaker constraints than Bs mixing does. For this

hierarchy of masses, the only relevant direct production constraint is the bound on the

mass of  , M > 90 GeV. There is an overlap between the allowed Bs mixing region and

the 1� preferred region for the b ! s`` measurements — so with these parameters, the

model can fit the b ! s`` anomalies. The value of ↵`
2 can be further lowered to be . 1,

in this case the values of M ,M` and Mq are close to present bounds coming from direct

searches. For example we verified that a fit to the data with ↵`
2 ⇡ 0.8 could be achieved

when M = 150 GeV, M` = 200 GeV and Mq = 800 GeV.

However, if we also wish to fit the anomalous magnetic moment of the muon, the muonic

coupling ↵`
2 must be larger. We show in Fig. 8 the relevant parameter space regions when

this coupling is set to ↵`
2 = 2.5, with the same hierarchy of masses as before. If we want to

take this explanation of the (g � 2)µ anomaly seriously, then we should consider possible

bounds from the shift of the EW gauge couplings Zµµ,Z⌫µ⌫µ and W+µ⌫µ (see also the

discussion in section IV of [41]). The corrections are non-universal and so a global fit to

EW data is required to establish the precise constraints on the couplings. Though such a

fit is beyond the scope of our work, näıve arguments suggest that O(1) values of ↵`
2 are not

problematic.

4 Flavour symmetries

In this section we establish a possible connection between the flavour violation present in

the SM and in the NP sector.

In the SM and in the limit of vanishing Yukawa couplings, the largest group of unitary

field transformations that commutes with the gauge group and leaves invariant the kinetic

terms is U(3)5 ⇥ U(1)H . Adopting notation similar to [72] we can decompose this group

in the following way;

GK ⌘ SU(3)3q ⇥ SU(3)2` ⇥ U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)ER ⇥ U(1)H ,

with

SU(3)3q = SU(3)QL ⇥ SU(3)UR ⇥ SU(3)DR (4.1)

SU(3)2` = SU(3)LL ⇥ SU(3)ER . (4.2)

The U(1) factors can be identified with the baryon (B) and lepton (L) numbers, the

hypercharge (Y ), a transformation (PQ) acting non trivially and in the same way only on

DR and ER, and finally a universal rotation for the fields ER and a U(1) global symmetry

associated to the Higgs doublet.

We would like now to make connections with the flavour structure of the SM and

the possible e↵ects coming from NP. In order to do that a first step is to identify (i)
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In the SM and in the limit of vanishing Yukawa couplings, the largest group of unitary

field transformations that commutes with the gauge group and leaves invariant the kinetic

terms is U(3)5 ⇥ U(1)H . Adopting notation similar to [72] we can decompose this group

in the following way;

GK ⌘ SU(3)3q ⇥ SU(3)2` ⇥ U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)ER ⇥ U(1)H ,

with

SU(3)3q = SU(3)QL ⇥ SU(3)UR ⇥ SU(3)DR (4.1)

SU(3)2` = SU(3)LL ⇥ SU(3)ER . (4.2)

The U(1) factors can be identified with the baryon (B) and lepton (L) numbers, the

hypercharge (Y ), a transformation (PQ) acting non trivially and in the same way only on

DR and ER, and finally a universal rotation for the fields ER and a U(1) global symmetry

associated to the Higgs doublet.

We would like now to make connections with the flavour structure of the SM and

the possible e↵ects coming from NP. In order to do that a first step is to identify (i)
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Comparing equations 3.1 and 3.2 we find the NP contribution to the Wilson coe�cients

relevant to b ! sµµ is

CµNP
9 = �CµNP

10 =

✓
4GFp

2
V ⇤
tsVtb

↵

4⇡

◆�1 7

576⇡2

K(xq, x`)

M2
 

↵q⇤
2 ↵q

3

���↵`
2

���
2
. (3.4)

The most recent best fit ranges on this combination of Wilson coe�cients are taken from

[49] and are given by

CµNP
9 = �CµNP

10 2 [�0.71,�0.35] (at 1�), (3.5)

CµNP
9 = �CµNP

10 2 [�0.91,�0.18] (at 2�). (3.6)

3.1.2 Four-quark operators

Interactions between four quarks are induced at loop level by diagrams like those in Fig.

2. These interactions can lead to meson mixing; in particular, if the process b ! sµµ

is present, then inevitably Bs mixing must also be induced. This process can therefore

introduce important constraints on the masses and couplings of the new particles. The

four quark e↵ective operator induced by the NP is

Leff � K 0(xq)

M2
 

↵q⇤
i ↵q

j↵
q⇤
m↵q

n

128⇡2

⇣
Q

i
L�

µQj
L

⌘ �
Q

m
L �µQ

n
L

�
+

5

9

⇣
Q

i
L�

µ~⌧Qj
L

⌘
·
�
Q

m
L �µ~⌧Q

n
L

��
,

(3.7)

where K 0(x) is the first derivative of K(x). The SU(2)L structure of the e↵ective operator

is similar to that of Eqn. 3.1 and can again be derived from the discussion in Appendix A.

Projecting the quark doublet along the down components we find that for Bs mixing the

relevant operator is

Leff � 7

576⇡2

K 0(xq)

M2
 

�
↵q⇤
2 ↵q

3

�2
(sL�

µbL)(sL�µbL) + h.c.. (3.8)

The Wilson coe�cient is easily extracted at high energy µ = ⇤ where the BSM particles

are dynamical fields. We fix ⇤ = 1 TeV in what follows. At this energy we have

Cbs
1 (⇤) =

7

576⇡2

K 0(xq)

M2
 

�
↵q⇤
2 ↵q

3

�2
(3.9)

– 9 –

Bs mixing



heavy particles in the box

5

Field SU(3)C ⇥ SU(2)L ⇥ U(1)Y U(1)B0 ⇥ U(1)L0 ⇥ U(1)�

QL (3, 2, 16) (13 , 0, 0)

UR (3, 1, 23) (13 , 0, 0)

DR (3, 1,�1
3) (13 , 0, 0)

LL (1, 2,�1
2) (0, 1, 0)

ER (1, 1,�1) (0, 1, 0)

�H (1, 2, 12) (0, 0, 0)

 (1, 4,�3
2) (0, 0, 1)

�q (3, 3, 43) (�1
3 , 0, 1)

�` (1, 3, 2) (0,�1, 1)

Table 2: Quantum numbers of the Standard Model fields and new fields under the SM

gauge symmetry (second column), and under the accidental global symmetries of the theory

(third column).

(1, 4,±1/2), the LP is not the neutral one. We conclude that, since we are demanding a

neutral LP, the LP can only be contained in the fermion field  with quantum numbers

(1, 4,±3
2). Imposing condition (e) on the field �q we are left with just two models:

• Model A.  ⇠ (1, 4,+3
2),�q ⇠ (3, 3, 43), �` ⇠ (1, 3, 2) with Yukawa interactions as in

(2.1):

↵q
i  Q

i
L�q + ↵`

i  L
i
L�` + h.c. (2.5)

• Model B.  ⇠ (1, 4,�3
2),�q ⇠ (3, 3,�5

3), �` ⇠ (1, 3, 2) with Yukawa interactions as

in (2.2):

↵q
i  Q

i
L�q + ↵`

i  
c
Li
L�` + h.c. (2.6)

The two models have very similar implications for the phenomenology that we are interested

in here. Henceforth, we discuss only Model A.

The quantum numbers of the SM and NP fields under the gauge and global symmetries

(to be discussed below) are summarised in Tab. 2 and the most general renormalizable

lagrangian is given by

L = LSM + L� + L + Lyuk, (2.7)

L� = (Dµ�`)
†Dµ�` + (Dµ�q)

†Dµ�q � V (�H ,�q,�`), (2.8)

L = i Dµ�µ �M   , (2.9)

Llin = ↵q
i  RQ

i
L�q + ↵`

i  RL
i
L�` + ↵q⇤

i Q
i
L R�

†
q + ↵`⇤

i L
i
L R�

†
`. (2.10)

See Appendix A for the explicit decompositions of the operators in terms of components

of the SU(2)L multiplets. Let us now analyse the accidental global symmetries of this

lagrangian. Before considering the breaking coming from Llin it is easy to show that the

Lagrangian is invariant under a global U(1)7. Indeed, the SM alone has accidental global

symmetry U(1)B ⇥U(1)e ⇥U(1)µ ⇥U(1)⌧ , while the gauge kinetic terms of the new BSM
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Figure 1: Diagram contributing to b ! sµµ

3.1.1 Semileptonic four-fermion operators

The process b ! s``, important for the LHCb B meson anomalies, is induced at loop

level by the diagram in Fig. 13. The SU(2)L structure of the NP-induced semileptonic

four-fermion interaction can be derived from the discussion in Appendix A, using the

lagrangian (Eqn. A.6) written explicitly in terms of SU(2)L components. The resulting

e↵ective NP lagrangian is

Leff � K(xq, x`)

M2
 

↵q⇤
i ↵q

j↵
`⇤
m↵`

n

64⇡2

⇣
Q

i
L�

µQj
L

⌘ �
L
m
L �µL

n
L

�
+

5

9

⇣
Q

i
L�

µ~⌧Qj
L

⌘
·
�
L
m
L �µ~⌧L

n
L

��
,

(3.1)

with xq ⌘
M2

q

M2
 
and x` ⌘ M2

`
M2
 
. The loop function K(xq, x`) can be obtained by the following

definitions;

K(x) ⌘ 1� x+ x2 log x

(x� 1)2
,

K(x, y) ⌘ K(x)�K(y)

x� y
.

The e↵ective hamiltonian relevant to b ! s`` transitions is

He↵ = �4GFp
2

(V ⇤
tsVtb)

X

i

C`
i (µ)O`

i (µ) , (3.2)

where O`
i are a basis of SU(3)C⇥U(1)Q-invariant dimension-six operators giving rise to the

flavour-changing transition. The superscript ` denotes the lepton flavour in the final state

(` 2 {e, µ, ⌧}), and the important operators for our process, O`
i , are given in a standard

basis by

O`(0)
9 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵`) , (3.3)

O`(0)
10 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵�5`).

3There are also Z and photon penguin diagrams which contribute, with a NP loop connecting the quarks

and joining to the leptons via a Z/� propagator. These penguin diagrams are discussed in Appendix B and

are found to be very suppressed relative to both the SM contribution and the diagram in Fig. 1, and hence

are neglected here.
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b→sℓℓ

the typical values of the parameters needed in our model, in Fig. 7 we show parameter space

regions assuming that ↵`
2 = 1.2 while parametrizing the masses in terms of one single scale

M assuming the following hierarchy M = M, M` = M + 200 GeV, Mq = M + 700 GeV.

In this way we are left with two parameters only (M and ↵q
2↵

q
3). The B ! Xs� allowed

region is not shown because it yields weaker constraints than Bs mixing does. For this

hierarchy of masses, the only relevant direct production constraint is the bound on the

mass of  , M > 90 GeV. There is an overlap between the allowed Bs mixing region and

the 1� preferred region for the b ! s`` measurements — so with these parameters, the

model can fit the b ! s`` anomalies. The value of ↵`
2 can be further lowered to be . 1,

in this case the values of M ,M` and Mq are close to present bounds coming from direct

searches. For example we verified that a fit to the data with ↵`
2 ⇡ 0.8 could be achieved

when M = 150 GeV, M` = 200 GeV and Mq = 800 GeV.

However, if we also wish to fit the anomalous magnetic moment of the muon, the muonic

coupling ↵`
2 must be larger. We show in Fig. 8 the relevant parameter space regions when

this coupling is set to ↵`
2 = 2.5, with the same hierarchy of masses as before. If we want to

take this explanation of the (g � 2)µ anomaly seriously, then we should consider possible

bounds from the shift of the EW gauge couplings Zµµ,Z⌫µ⌫µ and W+µ⌫µ (see also the

discussion in section IV of [41]). The corrections are non-universal and so a global fit to

EW data is required to establish the precise constraints on the couplings. Though such a

fit is beyond the scope of our work, näıve arguments suggest that O(1) values of ↵`
2 are not

problematic.

4 Flavour symmetries

In this section we establish a possible connection between the flavour violation present in

the SM and in the NP sector.

In the SM and in the limit of vanishing Yukawa couplings, the largest group of unitary

field transformations that commutes with the gauge group and leaves invariant the kinetic

terms is U(3)5 ⇥ U(1)H . Adopting notation similar to [72] we can decompose this group

in the following way;

GK ⌘ SU(3)3q ⇥ SU(3)2` ⇥ U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)ER ⇥ U(1)H ,

with

SU(3)3q = SU(3)QL ⇥ SU(3)UR ⇥ SU(3)DR (4.1)

SU(3)2` = SU(3)LL ⇥ SU(3)ER . (4.2)

The U(1) factors can be identified with the baryon (B) and lepton (L) numbers, the

hypercharge (Y ), a transformation (PQ) acting non trivially and in the same way only on

DR and ER, and finally a universal rotation for the fields ER and a U(1) global symmetry

associated to the Higgs doublet.

We would like now to make connections with the flavour structure of the SM and

the possible e↵ects coming from NP. In order to do that a first step is to identify (i)
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Figure 8: Parameter space plot for ↵`
2 = 2.5, and with the masses of the three fields given

by M = M,M` = M + 200 GeV,Mq = M + 700 GeV. With this large value of ↵`
2 there

is an overlap between the regions that fit the B anomalies (in blue), and the anomalous

magnetic moment of the muon (in green).

where the quantum numbers are specified with respect to the direct product of groups

SU(2)QL ⇥ SU(2)UR ⇥ SU(2)DR .

3. GF = U(1)9

This case mimics partial compositeness. The irreducible spurions are connected to

the Yukawa couplings in the following way;

(YU )ij ⇠ ✏qi ✏
u
j , (YD)ij ⇠ ✏qi ✏

d
j . (4.5)

With these specific cases in mind we are now ready to discuss flavour violation induced

by operators of the form ↵q
i  Q

i
L�, ↵

u
i  U

i
R� and ↵d

i  D
i
R�. These operators break the

flavour symmetry and in order to restore it we could assume that the vectors ↵F are again

spurions with definite transformation rules under the flavour symmetry. We could now

assume minimality of flavour violation in the following sense: the ↵F
i can be expressed

using the irreducible spurions used to construct the SM Yukawa couplings. Following this

procedure we obtain the following results.

1. GF = U(3)3q

To recover flavour invariance the ↵F have to transform in the following way;

↵q ⇠ (3, 1, 1), ↵u ⇠ (1, 3, 1), ↵d ⇠ (1, 1, 3). (4.6)
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R�. These operators break the

flavour symmetry and in order to restore it we could assume that the vectors ↵F are again

spurions with definite transformation rules under the flavour symmetry. We could now

assume minimality of flavour violation in the following sense: the ↵F
i can be expressed

using the irreducible spurions used to construct the SM Yukawa couplings. Following this

procedure we obtain the following results.

1. GF = U(3)3q

To recover flavour invariance the ↵F have to transform in the following way;

↵q ⇠ (3, 1, 1), ↵u ⇠ (1, 3, 1), ↵d ⇠ (1, 1, 3). (4.6)
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Figure 2: Diagrams contributing to Bs mixing

Comparing equations 3.1 and 3.2 we find the NP contribution to the Wilson coe�cients

relevant to b ! sµµ is

CµNP
9 = �CµNP

10 =

✓
4GFp

2
V ⇤
tsVtb

↵

4⇡

◆�1 7

576⇡2

K(xq, x`)

M2
 

↵q⇤
2 ↵q

3

���↵`
2

���
2
. (3.4)

The most recent best fit ranges on this combination of Wilson coe�cients are taken from

[49] and are given by

CµNP
9 = �CµNP

10 2 [�0.71,�0.35] (at 1�), (3.5)

CµNP
9 = �CµNP

10 2 [�0.91,�0.18] (at 2�). (3.6)

3.1.2 Four-quark operators

Interactions between four quarks are induced at loop level by diagrams like those in Fig.

2. These interactions can lead to meson mixing; in particular, if the process b ! sµµ

is present, then inevitably Bs mixing must also be induced. This process can therefore

introduce important constraints on the masses and couplings of the new particles. The

four quark e↵ective operator induced by the NP is

Leff � K 0(xq)

M2
 

↵q⇤
i ↵q

j↵
q⇤
m↵q

n

128⇡2

⇣
Q

i
L�

µQj
L

⌘ �
Q

m
L �µQ

n
L

�
+

5

9

⇣
Q

i
L�

µ~⌧Qj
L

⌘
·
�
Q

m
L �µ~⌧Q

n
L

��
,

(3.7)

where K 0(x) is the first derivative of K(x). The SU(2)L structure of the e↵ective operator

is similar to that of Eqn. 3.1 and can again be derived from the discussion in Appendix A.

Projecting the quark doublet along the down components we find that for Bs mixing the

relevant operator is

Leff � 7

576⇡2

K 0(xq)

M2
 

�
↵q⇤
2 ↵q

3

�2
(sL�

µbL)(sL�µbL) + h.c.. (3.8)

The Wilson coe�cient is easily extracted at high energy µ = ⇤ where the BSM particles

are dynamical fields. We fix ⇤ = 1 TeV in what follows. At this energy we have

Cbs
1 (⇤) =

7

576⇡2

K 0(xq)

M2
 

�
↵q⇤
2 ↵q

3

�2
(3.9)
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Bs mixing

Figure 3: Diagram contributing to b ! s�. The photon is attached in all possible ways.

In order to place bounds on the parameters of our model, we take into account QCD

e↵ects using the results and procedure of [55]. Using the anomalous dimension of this work

we found that the running of Wilson coe�cient from the scale of the New Physics (⇤) to

the scale of the process (mb) is given by Cbs
1 (mb) = ⌘V LLCbs

1 (⇤) with ⌘V LL = 0.78. For

the evaluation of the relevant matrix element we used the lattice result of [56]. These lead

to a constraint (at 95% confidence level) on the coe�cient

Cbs
1 (⇤) . 1.8⇥ 10�5

TeV2 (3.10)

which translates into

7

576⇡2

K 0(xq)

M2
 

��↵q⇤
2 ↵q

3

��2 < 1.8⇥ 10�5

✓
1

1 TeV

◆2

. (3.11)

Thus the measurement of Bs mixing produces a bound on the hadronic couplings

involved in the b ! sµµ process, viz. ↵q
2 and ↵q

3. The model can hence accommodate both

this bound and the b ! sµµ data if the muonic coupling ↵`
2 is su�ciently large. In this

respect the model is similar to Z 0 models — the couplings involved factorize into leptonic

couplings and hadronic couplings which can be set independently. This factorization does

not occur in leptoquark models.

3.1.3 b ! s�

The radiative process b ! s� will also be induced by the diagram in Fig. 3. The couplings

involved are the same as those for Bs mixing. However, the amplitudes will scale di↵erently

with the parameters ↵q and Mq between the two processes. Constraints from b ! s� could

therefore provide complementary information.

At the mass of the b quark, the process b ! s� is described by the following e↵ective

hamiltonian:

He↵ = �4GFp
2

(V ⇤
tsVtb)

⇥
C7(mb)O7(mb) + C 0

7(mb)O0
7(mb)

⇤
,

where O(0)
7 = e

16⇡2mb

�
s̄�↵�PR(L)b

�
F↵� .
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SM + U(1)’ + T’ (vector like) 
neutral under U(1)’ charged under U(1)’

Z’/top (also muon) effective coupling from mixing

yT∼(0,0,yᵗT) 
aligned with up sector  
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SM + U(1)’ + T’ (vector like) 
neutral under U(1)’ charged under U(1)’
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mZ’ < TeV on-shell proaction 
at LHC
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smaller BR(Z’→ μμ)  
Z’→ττ search

Z’/τ coupling

part of strongly interacting sector:
• Z’ is the lighter vector resonance 
• Z’ couplings to fermion depend on compositeness 

(proportional to the fermion mass, BR(Z’→ μμ) is small)

• U(1)’ is dynamically broken by a condensate, Φ 
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the b→sℓℓ anomalies can be explained by loop mediated 
models, may be related to (g-2)μ and/or dark matter

the new physics can be below the TeV

in Z’ models which couples only to top and muons, the V-A 
structure (in quark sector) is a clear prediction and the FCNC 
are mediated by the top/W loop
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effective Hamiltonian for b→sℓℓ transitions

2

II. GENERAL DISCUSSION

The e↵ective weak Hamiltonian that describes the b !
s`+`� transitions is given by

H
e↵

= �4GFp
2
VtbV

⇤
ts

e2

16⇡2

X

i

�
C`

iO
`
i+C 0

i
`O0`

i

�
+h.c., (3)

where e is the EM gauge coupling and the sum runs over
the dimension five and dimension six operators. Denot-
ing SM and NP contributions to the Wilson coe�cients
as C`

i = C`,SM
i +C`,NP

i , global analyses of all b ! s`+`�

indicate a non-vanishing Cµ,NP

9

, with some preference for
a NP solution with Cµ,NP

9

= �Cµ,NP

10

' 0.60(15), see,
e.g., [15]. Here the relevant four-fermion operators are
O`

9

=
�
s̄�µPLb

��
¯̀�µ`

�
, and O`

10

=
�
s̄�µPLb

��
¯̀�µ�

5

`
�
.

The data thus imply the presence of NP contributions
with a V � A structure in the quark sector. How-
ever, additional contributions of comparable magnitude
but with a V + A structure from the NP operators
O0`

9

=
�
s̄�µPRb

��
¯̀�µ`

�
, O0`

10

=
�
s̄�µPRb

��
¯̀�µ�

5

`
�
are

still allowed by the current data.
In the class of models we are considering only the O`

9

and O`
10

are generated at one loop, see Fig. 1. The V �A
current in the quark sector is a clear prediction of the
models, while the structure of the couplings to leptons
depends on the details of the model. For simplicity we
will assume from now on that NP predominantly a↵ects
the b ! sµ+µ� transition and not the b ! se+e�. This
leads to LFU violation when comparing b ! sµ+µ� with
b ! se+e�. It also modifies the total rates in various
b ! sµ+µ� decays, in accordance with indications of
global fits [12–15]. On the other hand Bs, Bd and K0

mixing via Z 0 exchange arises only at the two-loop level
and is well within present experimental and theoretical
precision.

Since the NP sector does not contain new sources of
flavor violation, this class of models respects the MFV
ansatz. In MFV, a shift to C`

9,10 can be correlated with
the analogue contributions to rare kaon decays. For in-
stance, theK+ ! ⇡+⌫⌫̄(�) decay branching ratio is mod-
ified to [52]1

B(K+ ! ⇡+⌫⌫̄(�)) = (8.4± 1.0)⇥ 10�11

⇥1

3

X

`

�����1 +
s2W (C`,NP

9

� C`,NP

10

)

X
SM

�����

2

, (4)

where X
SM

= Xt + (Xc + �Xc,u)V 4

usVcsV ⇤
cd/VtsV ⇤

td '
2.10 + 0.24i with Xi defined, e.g., in [53], and have writ-
ten for the weak mixing angle sW ⌘ sin ✓W ' 0.48,
cW ⌘ cos ✓W . For values of Cµ,NP

9,10 that are preferred
by current b ! s`` data, the resulting e↵ect in K ! ⇡⌫⌫̄

1
This is for leptons in an isospin singlet state, while for an isospin

triplet combination, the NP contribution flips its sign.
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Figure 1: The NP contributions to the di ! dj`` processes
from the exchange of Z0 that couples to the top quark and a
heavy top partner T .

is small compared to current experimental uncertainties,
but could be within reach of the ongoing NA62 experi-
ment [54]. Similar comments apply to the theoretically
very clean KL ! ⇡0⌫⌫̄ decay. The decay KL ! ⇡0µ+µ�

is modified at the level of O(5%) by such NP models.
To observe these e↵ects the experimental sensitivity [55]
would need to be improved by two orders of magnitude
in conjunction with some improvements in theoretical
precision [56]. The decay modes K+ ! ⇡+e+e� and
K+ ! ⇡+µ+µ� are dominated by long distance contri-
butions, while the NP contributions are expected to only
give e↵ects below the permille level and thus be unob-
servable. The same is true for KL ! µ+µ� transition,
where again the NP contribution is drowned by the SM
long distance e↵ects.

III. THE MINIMAL ALIGNED U(1)0 MODEL

As a concrete example we next discuss the simplest
realization of the above framework. We restrict our-
selves to the case where on the leptonic side only the
muons are a↵ected by NP. The minimal model has a
new U(1)0 gauge symmetry that is spontaneously bro-
ken through the (vacuum expectation value) VEV of a
scalar field, �, transforming as � ⇠ (1, 1, 0, q0) under
SU(3)C ⇥SU(2)L⇥U(1)Y ⇥U(1)0. The model contains,
in addition, a colored Dirac fermion T 0 ⇠ (3, 1, 2/3, q0).
The SM is thus supplemented by the Lagrangian

LU(1)

0 =|(Dµ�)|2 �
m2

�

2ṽ2

⇣
�2 � ṽ2

2

⌘
2

+ T̄ 0(i/D �MT )T
0 � 1

4
F 02
µ⌫ ,

(5)

where Dµ � ig̃q0Z 0
µ, the U(1)0 part of the covariant

derivative, F 0
µ⌫ = @µZ 0

⌫ � @⌫Z 0
µ the field strength for the

gauge boson Z 0, and � = (�+ ṽ)/
p
2. Here g̃ is the U(1)0

gauge coupling, ṽ is the VEV that breaks the U(1)0, while
� is the physical scalar boson that obtains mass m� after
spontaneous breaking of U(1)0.
All the SM fields are singlets under U(1)0. There are

thus only three renormalizable interactions between the
SM and the sector charged under U(1)0. These are the
Higgs portal coupling � to the SM Higgs, H; the U(1)0

C`
i = C`,SM

i + C`,NP
i

SM predictions
Cµ,SM

9 = �Cµ,SM
10 ⇡ 4.27 Geng et al 1704.05446

O`
9 = (s̄�µPLb)(¯̀�

µ`)

O`
10 = (s̄�µPLb)(¯̀�

µ�5`)

› b→sll decays proceed via FCNC transitions that only occur at loop order
(or beyond) in the SM

› New particles can for example contribute to loop or tree level diagrams
by enhancing/suppressing decay rates, introducing new sources of CP
violation or modifying the angular distribution of the final-state particles

› Rare b decays place strong constraints on many NP models by probing
energy scales higher than direct searches
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