

LOOP LEVEL MODELS

Yotam Soreq

Instant workshop on *B* meson anomalies CERN, May 18, 2017

1

$$R_{K^{(*)}} = \frac{\operatorname{Br}(B \to K^{(*)} \mu^+ \mu^-)}{\operatorname{Br}(B \to K^{(*)} e^+ e^-)}$$

G. Hiller, F. Kruger hep-ph/0310219

$$R_{K^{(*)}}^{\rm SM} = 1 + \mathcal{O}(m_{\mu}^2/m_b^2)$$

LHCb:

 $R_{K,[1,6]GeV^2} = 0.745 \pm 0.090$ $R_{K^*,[0.045,1.1]GeV^2} = 0.66^{+0.11}_{-0.07}$ $R_{K^*,[1.1,6]GeV^2} = 0.69^{+0.12}_{-0.08}$

global fit of $b \rightarrow s\ell\ell$ data

$$C_9^{\mu,\mathrm{NP}} = -C_{10}^{\mu,\mathrm{NP}} \approx -0.64 \pm 0.15$$

Altmannshofer et al 1703.09189 Gen et al 1704.05446 Ciuchini et al 1704.05447 D'Amino et al 1704.05438 Altmannshofer et al 1704.05435 Capdevila et al 1704.05340

global fit of $b \rightarrow s\ell\ell$ data

$$C_9^{\mu,\mathrm{NP}} = -C_{10}^{\mu,\mathrm{NP}} \approx -0.64 \pm 0.15$$

Altmannshofer et al 1703.09189 Gen et al 1704.05446 Ciuchini et al 1704.05447 D'Amino et al 1704.05438 Altmannshofer et al 1704.05435 Capdevila et al 1704.05340

NP effect is 15% of the SM

tree level $c/\Lambda_i \sim 35 \text{ TeV}$

loop mediaed $c/\Lambda_i \sim 3$ TeV

loop+MFV $\Lambda_i < 1TeV$

DMALIES AND DARK MATTER

DMALIES AND DARK MATTER

HEAVY PARTICLES IN THE BOX

B. Gripaions, M. Nardecchia, S. Renner - 1509.05020 P. Arnan, L. Hofer, F. Mesica, A. Crivellin - 1608.07832

HEAVY PARTICLES IN THE BOX

HEAVY PARTICLES IN THE BOX

Lepton flavor universality violation without new sources of quark flavor violation

J.F. Kamenik, YS, J. Zupan - 1704.06005

use the SM FCNC mechanism

use the SM FCNC mechanism Z' which couples only to tops and muons

use the SM FCNC mechanism Z' which couples only to tops and muons

 $b \rightarrow s$ transition

- V-A structure
- CKM suppressed
- MFV structure

use the SM FCNC mechanism Z' which couples only to tops and muons

b→s transition *V-A* structure
CKM suppressed
MFV structure

ll couplings: dependents on the specific implementation

SM + U(1)' + T' (vector like)neutral under U(1)' charged under U(1)'

Z'/top (also muon) effective coupling from mixing $y_T^i \bar{T}' \Phi u_R^i$ $y_T \sim (0,0,y^t)$ aligned with up sector

SM + U(1)' + T' (vector like)

$$C_{9,10}^{\mu,\text{NP}} = \frac{1}{2}q'q'_{\mu,V,A}\frac{m_t^2}{m_{Z'}^2}\frac{\tilde{g}^2}{e^2}s_R^2\log\left(\frac{m_T^2}{m_W^2}\right) + \dots \approx 0.4\left(\tilde{g}q'\right)^2\left(\frac{500\,\text{GeV}}{m_{Z'}}\right)^2\left(\frac{s_R}{0.3}\right)^2$$

 \tilde{g} - U(1)' gauge coupling q' - effective charge s_R - top/T' mixing angle $q'_{\mu,V} = -q'_{\mu,A} = q'$ $m_T = 5m_{Z'}$

8

SM + U(1)' + T' (vector like)

 $m_{Z'} < \text{TeV}$

on-shell proaction at LHC

dominant for $m_{Z'} > 300 \text{GeV}$

BEYOND THE MINIMAL MODEL

Z'/τ coupling

smaller BR($Z' \rightarrow \mu\mu$) $Z' \rightarrow \tau\tau$ search

BEYOND THE MINIMAL MODEL

Z'/τ coupling

part of strongly interacting sector:

- Z' is the lighter vector resonance
- Z' couplings to fermion depend on compositeness (proportional to the fermion mass, $BR(Z' \rightarrow \mu\mu)$ is small)
- U(1)' is dynamically broken by a condensate, Φ

SUMMARY

- the $b \rightarrow s\ell\ell$ anomalies can be explained by loop mediated models, may be related to $(g-2)_{\mu}$ and / or dark matter
- the new physics can be below the TeV
- in Z' models which couples only to top and muons, the V-A structure (in quark sector) is a clear prediction and the FCNC are mediated by the top/W loop

BACKUP SLIDES

effective Hamiltonian for *b*→*sℓℓ* transitions

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i^{\ell} O_i^{\ell} + C_i^{\prime \ell} O_i^{\prime \ell} \right) + \text{h.c.}$$

$$P_L b)(\bar{\ell}\gamma^{\mu}\ell) \qquad \qquad C_i^{\ell} = C_i^{\ell,\text{SM}} + C_i^{\ell,\text{NP}}$$

 $O_9^{\ell} = (\bar{s}\gamma_{\mu}P_Lb)(\bar{\ell}\gamma^{\mu}\ell)$ $O_{10}^{\ell} = (\bar{s}\gamma_{\mu}P_Lb)(\bar{\ell}\gamma^{\mu}\gamma_5\ell)$

SM predictions

$$C_9^{\mu,\rm SM} = -C_{10}^{\mu,\rm SM} \approx 4.27$$

Geng et al 1704.05446

 d^{i}

 d^{j}

W

