<u>Lepton Flavor Universality violations and Flavor Symmetries</u>

Gino Isidori [University of Zürich]

Introduction

- EFT-type considerations
- Simplified dynamical models
- Conclusions

Disclaimer:

- this is not review
- apologies for missing citations

Introduction

Recent data show some <u>convincing</u> evidences of Lepton Flavor Universality violations

- b \rightarrow c charged currents: τ vs. light leptons (μ , e) [R_D, R_{D*}]
- → b → s neutral currents: μ vs. e [R_K, R_{K*} (+ P₅ *et al.*)]

IF taken together... this is probably the largest "coherent" set of NP effects in present data...

A few general messages:

- LFU is not a fundamental symmetry of the SM Lagrangian (*global symmetry of the gauge sector only, badly broken by Yukawas*)
- LFU tests at the Z peak are not as stringent as they may appear (→ gauge sector)
- Most stringent tests of LFU involve only 1st-2nd gen. quarks & leptons

Natural to conceive NP models where LFU is violated more in processes involving 3rd gen. quarks & leptons (↔ *hierarchy in Yukawa coupl.*)

Introduction

These recent results have stimulated a lot of theoretical activity (*not particularly instructive to discuss all NP proposals*...)

What I will discuss next is a bottom-up approach made of three main steps:

The main guide will be the attempt to describe <u>both LFU effects</u> within the same framework [*possibly linking them to the observed pattern of Yukawa couplings*] and, while "going up" in energies (and assumptions), check the consistency with

- high-pT physics

<u>Introduction</u>

These recent results have stimulated a lot of theoretical activity (*not particularly instructive to discuss all NP proposals*...)

What I will discuss next is a bottom-up approach made of three main steps:

Faroughy, Greljo, Kamenik '16

The main guide will be the attempt to describe <u>both LFU effects</u> within the same framework [*possibly linking them to the observed pattern of Yukawa couplings*] and, while "going up" in energies (and assumptions), check the consistency with

- high-pT physics

EFT-type considerations

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- RR and scalar currents disfavored \rightarrow LL current-current operators
- Necessity of at least one SU(2)_L-triplet effective operator (*as in the Fermi theory*):

$$\frac{g_q g_\ell}{\Lambda^2} \lambda_{ij}^q \lambda_{kl}^\ell (\bar{Q}_L^i T^a \gamma_\mu Q_L^j) (\bar{L}_L^k T^a \gamma^\mu L_L^l)$$

Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)

- Large coupling (competing with SM tree-level) in bc $\rightarrow l_3 v_3$
- Small non-vanishing coupling (competing with SM FCNC) in $bs \rightarrow l_2 l_2$

EFT-type considerations

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- RR and scalar currents disfavored \rightarrow LL current-current operators
- Necessity of at least one SU(2)_L-triplet effective operator (*as in the Fermi theory*):

$$\frac{g_q g_\ell}{\Lambda^2} \lambda_{ij}^q \lambda_{kl}^\ell (\bar{Q}_L^i T^a \gamma_\mu Q_L^j) (\bar{L}_L^k T^a \gamma^\mu L_L^l)$$

- Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)
- Large coupling (competing with SM tree-level) in bc (= 33_{CKM}) $\rightarrow l_3 v_3$
- Small non-vanishing coupling (competing with SM FCNC) in $bs \rightarrow l_2 l_2$

$$Q_{L}^{(3)} \sim q_{L}^{(b)} = \begin{bmatrix} V_{ib}^{*} u_{L}^{i} \\ b_{L} \end{bmatrix} \text{ up to CKM } \text{rotations of } O(V_{cb})$$
$$\downarrow$$
$$\lambda_{ij}^{q,\ell} = \delta_{i3}\delta_{3j} + \text{small corrections} \text{for } 2^{\text{nd}} (\& 1^{\text{st}}) \text{ generations}$$

V_{cb} 3_L t_L b_L

> Glashow, Guadagnoli, Lane '14

<u>EFT-type considerations</u>

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- RR and scalar currents disfavored \rightarrow LL current-current operators
- Necessity of at least one SU(2)_L-triplet effective operator (*as in the Fermi theory*):

$$\frac{g_q g_\ell}{\Lambda^2} \lambda^q_{ij} \lambda^\ell_{kl} (\bar{Q}^i_L T^a \gamma_\mu Q^j_L) (\bar{L}^k_L T^a \gamma^\mu L^l_L)$$

 Two natural classes of mediators, giving rise to different correlations among quark×lepton (evidence) and quark×quark + lepton×lepton (bounds)

G. Isidori – *LFU* violations and Flavor Symmetries

$$\frac{\mathcal{A}(b \to c \ \ell^i \bar{\nu}^i)_{\rm SM+NP}}{\mathcal{A}(b \to c \ \ell^i \bar{\nu}^i)_{\rm SM}} = 1 + R_0 \lambda_{ii}^{\ell} \qquad \qquad R_0 \equiv \frac{g_{\ell}g_q}{g^2} \frac{m_W^2}{\Lambda^2}$$

I. From R(D^{*}) & R(D) data [$\Gamma(b \rightarrow c\tau v)/\Gamma(b \rightarrow c\mu v)$] $\rightarrow \left[R_0 = 0.14 \pm 0.04\right]$

NP Scale:
$$\begin{array}{c} 200 \text{ GeV} \longleftrightarrow 2 \text{ TeV} \\ (\text{weak coupl.}) \end{array} \longleftrightarrow (\text{strong coup.}) \end{array}$$

G. Isidori – *LFU* violations and Flavor Symmetries

$$\frac{\mathcal{A}(b \to c \ \ell^i \bar{\nu}^i)_{\rm SM+NP}}{\mathcal{A}(b \to c \ \ell^i \bar{\nu}^i)_{\rm SM}} = 1 + R_0 \lambda_{ii}^{\ell} \qquad \qquad R_0 \equiv \frac{g_{\ell}g_q}{g^2} \frac{m_W^2}{\Lambda^2}$$

I. From R(D^{*}) & R(D) data [$\Gamma(b \rightarrow c\tau v)/\Gamma(b \rightarrow c\mu v)$] $\rightarrow R_0 = 0.14 \pm 0.04$

NP Scale:
$$\begin{array}{c} 200 \text{ GeV} & \longleftrightarrow & 2 \text{ TeV} \\ (\text{weak coupl.}) & & (\text{strong coup.}) \end{array}$$

The only possibility to get a larger NP scale is to remove the CKM suppression in the NP amplitude ($\Lambda \rightarrow \sim 5 \times \Lambda$), alining it to the b-c direction (*strong MFV*). However... Crivellin, Muller, Ota '17

- This is not nice form the model-building side
- It creates a <u>serious fine-tuning problem</u> in $b_L \rightarrow s_L v_3 v_3$ (and other FCNCs)

$$\frac{\mathcal{A}(b \to c \ \ell^i \bar{\nu}^i)_{\rm SM+NP}}{\mathcal{A}(b \to c \ \ell^i \bar{\nu}^i)_{\rm SM}} = 1 + R_0 \lambda_{ii}^{\ell} \qquad \qquad R_0 \equiv \frac{g_{\ell}g_q}{g^2} \frac{m_W^2}{\Lambda^2}$$

I. From R(D^{*}) & R(D) data [$\Gamma(b \rightarrow c\tau v)/\Gamma(b \rightarrow c\mu v)$] $\rightarrow R_0 = 0.14 \pm 0.04$

II. In principle, it should be possible to get a strong bound on the sub-leading leptonic coupling $(\lambda_{\mu\mu})$ from $\Gamma(b \to c\mu\nu)/\Gamma(b \to ce\nu)$, but surprisingly it is not so stringent $(|\lambda_{\mu\mu}| \leq 0.1) \to \underline{no \ dedicated \ studies} \ \underline{(a, B-facotries \ !}$

$$\frac{\mathcal{A}(b \to c \ \ell^i \bar{\nu}^i)_{\rm SM+NP}}{\mathcal{A}(b \to c \ \ell^i \bar{\nu}^i)_{\rm SM}} = 1 + R_0 \lambda_{ii}^{\ell} \qquad \qquad R_0 \equiv \frac{g_{\ell}g_q}{g^2} \frac{m_W^2}{\Lambda^2}$$

I. From R(D^{*}) & R(D) data [$\Gamma(b \rightarrow c\tau v)/\Gamma(b \rightarrow c\mu v)$] $\rightarrow R_0 = 0.14 \pm 0.04$

II. In principle, it should be possible to get a strong bound on the sub-leading leptonic coupling $(\lambda_{\mu\mu})$ from $\Gamma(b \to c\mu\nu)/\Gamma(b \to ce\nu)$, but surprisingly it is not so stringent $(|\lambda_{\mu\mu}| \leq 0.1) \to \underline{no \ dedicated \ studies} \ \underline{(a \ B-facotries \ !}$

III. This breaking of LFU in c.c. is expected to be universal on the quark side for $b \rightarrow c$ and $b \rightarrow u$

$$BR(B \to D^*\tau v)/BR_{SM} = BR(B \to D\tau v)/BR_{SM} = BR(\Lambda_b \to \Lambda_c \tau v)/BR_{SM} = ...$$

= BR(B \to \pi \to v)/BR_{SM} = BR(\Lambda_b \to p \to v)/BR_{SM} = BR(B_u \to \to v)/BR_{SM} = ...

N.B.: $BR(B_u \rightarrow \tau v)^{exp}/BR_{SM} = 1.31 \pm 0.27$ UTfit. '16

To go beyond charged currents, and discuss possible connections between quark×lepton (evidence) and quark×quark + lepton×lepton (bounds) we need extra theoretical assumptions \rightarrow *flavor symmetries*

Given....

- <u>Small deviations from SM in $\Delta F=2$ </u> [up to 20% vs. SM amplitude that is CKM and loop suppressed] with particularly tight constraints from MFV-type tests $[\Delta M_s/\Delta M_d, \sin(2\beta) \rightarrow up$ to few% vs. SM]
- <u>Per-mill constraints on LFU violations in purely leptonic tau decays</u> and in semi-leptonic processes involving only light quarks
- <u>Very stringent constraints on LFV in charged leptons</u>
- Possible link to the observed pattern of Yukawa couplings

 $U(2)^n$ (chiral) flavor symmetry

- 3rd generations fermions are <u>singlets</u>
- 1st and 2nd generation fermions are <u>doublets</u>

A brief detour: $U(2)^n$ flavor symmetries (acting on light generations)

- → The exact symmetry limit is good starting point for the SM spectrum $(m_u=m_d=m_s=m_c=0, V_{CKM}=1) \rightarrow \underline{small\ breaking\ terms}$ needed
- Efficient protection of FCNCs (~MFV like)

Barbieri, G.I., Jones-Perez, Lodone, Straub, '11

Quark sector: $U(2)^3 = U(2)_a \times U(2)_u \times U(2)_d$

$$Y_{\rm u} = y_{\rm t} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

unbroken symmetry

A brief detour: $U(2)^n$ flavor symmetries (acting on light generations)

- → The exact symmetry limit is good starting point for the SM spectrum $(m_u=m_d=m_s=m_c=0, V_{CKM}=1) \rightarrow \underline{small\ breaking\ terms}$ needed
- Efficient protection of FCNCs (~MFV like)

Barbieri, G.I., Jones-Perez, Lodone, Straub, '11

Quark sector:
$$U(2)^3 = (U(2)_q \times U(2)_u \times U(2)_d$$

 $Y_u = y_t \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} \Delta & V \\ 0 & 1 \end{bmatrix}$
unbroken symmetry

Minimal breaking to reproduce SM Yukawa couplings while keeping small FCNCs:

$$|\mathbf{V}| \sim 0.04 \sim 2_{\mathrm{q}}$$

 $|\Delta| \sim 0.006 \sim 2_{\mathrm{q}} \ge 2_{\mathrm{u}}$

- The assumption of a single (2,1,1) breaking term [= *a single spurion connecting the light generations to the third one*] ensures a MFV-like protection of FCNCs
- More "efficient" than MFV for having large effects for 3rd generation

G. Isidori – LFU violations and Flavor Symmetries

EFT-type considerations [U(2)ⁿ flavor symmetry]

General EFT analysis of (LH) <u>four-fermion operators</u> based on the flavor symmetry $U(2)_q \times U(2)_l$ broken only by two spurions $V_Q = (V_{td}, V_{ts})$ and $V_l = (V_e, V_\mu) \approx (0, V_\mu)$ Bordone, GI,

Trifinopoulos '17

$$\overline{q}^{(3)} \Gamma q^{(3)} \times \overline{l}^{(3)} \Gamma l^{(3)}$$

$$\overline{q}_{light} \mathbf{V}_{\mathbf{Q}} \Gamma q^{(3)} \times \overline{l}^{(3)} \Gamma l^{(3)}$$

$$\overline{q}^{(3)} \Gamma q^{(3)} \times \overline{l}_{light} \mathbf{V}_{l} \Gamma l^{(3)}$$

$$\vdots$$

General EFT analysis of (LH) <u>four-fermion operators</u> based on the flavor symmetry $U(2)_q \times U(2)_l$ broken only by two spurions $V_Q = (V_{td}, V_{ts})$ and $V_l = (V_e, V_\mu) \approx (0, V_\mu)$ Bordone, GI, Trifinopoulos '17

Strategy/goal:

• Overall scale fixed by $R_{D^*} \rightarrow$ check the consistency with all the other low-energy processes \rightarrow determine additional dynamical conditions (+ size of $|V_l|$) to ensure a "natural" EFT

Approximations/assumptions:

- Include leading radiatively generated terms in the running Λ → m_W (sizable impact in τ → *lvv* decays)
- Neglect constraints from observables sensitive at the tree level to non four-quark operators

Feruglio, Paradisi, Pattori '16, '17

Process	Combination	Constraint	
$R_{D^{(*)}}$	$\operatorname{Re}\left(C_{02}^{q} + V_{Q_{s}}C_{12}^{q}\frac{V_{cs}}{V_{cb}}\right)$	$(0.7 \pm 0.2) \times 10^{-1}$ V	
$B \to D \mu \nu_{\mu}$	$\operatorname{Re}\left(C_{04}^{q} + V_{Q_{s}}C_{14}^{q}\frac{V_{cs}}{V_{cb}}\right)$	$-(0.8 \pm 2.5) \times 10^{-2}$ • T	
$\tau \to \mu \nu \overline{\nu}$	$\operatorname{Re}\left(C_{04}^{\ell} ight)$	$-(1.2\pm0.5)\times10^{-2}$	
$ V_{us} _{\tau}/ V_{us} _{\mu}$	${\rm Re} [C_{08}^q - C_{06}^q +$	$(0.7 \pm 0.4) \times 10^{-2}$	
	$(C_{14}^q - C_{12}^q) V_{Q_s} V_{ub} / V_{us}]$		
$\tau \rightarrow \mu e e$	$ V_l \times (C_{13}^\ell + C_{14}^\ell ^2 +$	$< 3.2 \times 10^{-4}$	
$\tau \to 3\mu$	$+C_{R2}^{\ell} ^2 + C_{T2}^{\ell} ^2)^{1/2}$		
$\tau \to \rho \mu$	$ C_{24}^q V_l $	$\leq 1.4 \times 10^{-4}$	
$\tau \to \omega \mu$	$ C_{23}^{q} V_{l} $	$\leq 3.2\times 10^{-4}$	
$B \to K \nu \overline{\nu}$	$ \operatorname{Re}(C_{11}^q - C_{12}^q) $	$\leq 8.0 \times 10^{-2}$	
$B^0 - \overline{B}^0$	$ C_{01}^{qq} + C_{02}^{qq} $	$\leq 0.42 \times 10^{-3}$	
$B_d \to \tau \mu$	$ C_{31}^q + C_{32}^q V_l $	$\leq 4.5 \times 10^{-2}$	
$R_K^{(*)}$	$\operatorname{Re}\left(C_{13}^{q-2} + C_{14}^{q-2}\right) V_l ^2$	$(-(0.8\pm0.2)\times10^{-3})$	

Two main anomalies we want to fit

• Terms that depends on $|V_l|$

Process	Combination	Constraint	
$R_{D^{(*)}}$	$\operatorname{Re}\left(C_{02}^{q} + V_{Q_{s}}C_{12}^{q}\frac{V_{cs}}{V_{cb}}\right)$	$(0.7 \pm 0.2) \times 10^{-1}$	 Two main anomalies we want to fit
$B \to D \mu \nu_{\mu}$	$\operatorname{Re}\left(C_{04}^{q}+V_{Q_{s}}C_{14}^{q}\frac{V_{cs}}{V_{cb}}\right)$	$-(0.8 \pm 2.5) \times 10^{-2}$	• Torma that donands on
$\tau \to \mu \nu \overline{\nu}$	$\operatorname{Re}\left(C_{04}^{\ell}\right)$	$-(1.2\pm0.5)\times10^{-2}$	$ V_1 $
$ V_{us} _{ au}/ V_{us} _{\mu}$	${\rm Re}[C_{08}^q - C_{06}^q +$	$(0.7 \pm 0.4) \times 10^{-2}$	1 <i>L</i> 1
	$(C_{14}^q - C_{12}^q) V_{Q_s} V_{ub} / V_{us}]$		• Strong (residual) bounds
$\tau \rightarrow \mu e e$	$ V_l \times (C_{13}^{\ell} + C_{14}^{\ell} ^2 +$	$< 3.2 \times 10^{-4}$	suppression)
$\tau \to 3\mu$	$+C_{R2}^{\ell} ^2 + C_{T2}^{\ell} ^2)^{1/2}$	<u><u> </u></u>	Suppression)
$\tau \to \rho \mu$	$ C_{24}^q V_l $	$\leq 1.4 \times 10^{-4}$	
$\tau \to \omega \mu$	$ C_{23}^{q} V_{l} $	$\leq 3.2 \times 10^{-4}$	without auark
$B \to K \nu \overline{\nu}$	$ \operatorname{Re}(C_{11}^q - C_{12}^q) $	$\leq 8.0 \times 10^{-2}$	spurion:
$B^0 - \overline{B}^0$	$ C_{01}^{qq} + C_{02}^{qq} $	$\leq 0.42 \times 10^{-3}$	→ 6×10 ⁻⁷
$B_d \to \tau \mu$	$ C_{31}^q + C_{32}^q V_l $	$\leq 4.5 \times 10^{-2}$	
$R_K^{(*)}$	$\operatorname{Re}\left(C_{13}^{q-2} + C_{14}^{q-2}\right) V_l ^2$	$(-(0.8\pm0.2)\times10^{-3})$	→ 3×10 ⁻⁵

.

<u>EFT-type considerations</u> [U(2)ⁿ flavor symmetry]

Process	Combination	Constraint
$R_{D^{(*)}}$	$\operatorname{Re}\left(C_{02}^{q} + V_{Q_{s}}C_{12}^{q}\frac{V_{cs}}{V_{cb}}\right)$	$((0.7 \pm 0.2) \times 10^{-1})$
$B \to D \mu \nu_{\mu}$	$\operatorname{Re}\left(C_{04}^{q} + V_{Q_{s}}C_{14}^{q}\frac{V_{cs}}{V_{cb}}\right)$	$-(0.8 \pm 2.5) \times 10^{-2}$
$\tau \to \mu \nu \overline{\nu}$	$\operatorname{Re}\left(C_{04}^{\ell}\right)$	$(-(1.2\pm0.5)\times10^{-2})$
$ V_{us} _{\tau}/ V_{us} _{\mu}$	$\operatorname{Re} \left[C_{08}^{q} - C_{06}^{q} + (C_{14}^{q} - C_{12}^{q}) V_{Q_s} V_{ub} / V_{us} \right]$	$(0.7 \pm 0.4) \times 10^{-2}$
$\tau \to \mu e e$ $\tau \to 3 \mu$	$ V_l \times \left(C_{13}^{\ell} + C_{14}^{\ell} ^2 + C_{R2}^{\ell} ^2 + C_{R2}^{\ell} ^2 + C_{T2}^{\ell} ^2 \right)^{1/2} $	$\leq 3.2 \times 10^{-4}$
$\tau \to \rho \mu$	$ C_{24}^q V_l $	$\leq 1.4 \times 10^{-4} $
$\tau \to \omega \mu$	$ C_{23}^q V_l $	$\leq 3.2 \times 10^{-4}$
$B \to K \nu \overline{\nu}$	$ \operatorname{Re}(C_{11}^q - C_{12}^q) $	$\leq 8.0 \times 10^{-2}$
$B^0 - \overline{B}^0$	$ C_{01}^{qq} + C_{02}^{qq} $	$\leq 0.42 \times 10^{-3}$
$B_d \to \tau \mu$	$ C_{31}^q + C_{32}^q V_l $	$\leq 4.5 \times 10^{-2}$
$R_K^{(*)}$	$\operatorname{Re}\left(C_{13}^{q-2} + C_{14}^{q-2}\right) V_l ^2$	$(-(0.8\pm0.2)\times10^{-3})$

Two main anomalies we want to fit

- Terms that depends on $|V_l|$
- Strong (residual) bounds from ΔF=2 (after CKM suppression)
- Non-vanishing term needed to compensate RGE effect in $\tau \rightarrow lvv$

Extra dynamical assumpt. necessary to obtain a consistent picture *G. Isidori* – *LFU* violations and Flavor Symmetries

<u>EFT-type considerations</u> [U(2)ⁿ flavor symmetry]

General EFT analysis of (LH) four-fermion operators based on the flavor symmetry $U(2)_q \times U(2)_l$ broken only by two spurions $V_O = (V_{td}, V_{ts})$ and $V_l = (V_e, V_{\mu}) \approx (0, V_{\mu})$

Bordone, GI, Trifinopoulos '17

• weaker coupling of the light-quark flavor-singlet combinations to NP (easy to implement in explicit NP constructions, e.g. partial compositeness)

 $\overline{\Psi}_{light} \gamma^{\mu} \Psi_{light} \longrightarrow \varepsilon_{light} \overline{\Psi}_{light} \gamma^{\mu} \Psi_{light}$ $|\varepsilon_{light}| \sim 0.1 \text{ (radiatively stable)} \qquad \Psi^{(3)} \bigvee (\Psi_{light}) \psi^{(3)} \psi$

• $|V_1| \sim 0.3 - 0.1$

But residual O(10%) tuning needed in order to satisfy the bounds from

- Bs mixing (\leftrightarrow <u>alignment to down-quark mass basis</u>)

• LFU in
$$\tau \rightarrow lvv$$

As already found in explicit model constructions [Greljo et al. '15, Barbieri et al. '16]

This coherent picture leads to several testable predictions in other low-energy observables:

• b \rightarrow c(u) lv	$BR(B \to D^*\tau v)/BR_{SM} = BR(B \to D\tau v)/BR_{SM} = BR(\Lambda_b \to \Lambda_c \tau v)/BR_{SM}$ $= BR(B \to \pi \tau v)/BR_{SM} = BR(\Lambda_b \to p \tau v)/BR_{SM} = BR(B_u \to \tau v)/BR_{SM}$
• b \rightarrow s $\mu\mu$	$\Delta C_9^\mu = -\Delta C_{10}^\mu$
• b \rightarrow s $\tau\tau$	$ NP \sim SM \rightarrow large enhancement (easily 10 \times SM)$
$b \rightarrow s vv$	$\sim O(1)$ deviation from SM in the rate
• $K \rightarrow \pi \nu \nu$	$\sim O(1)$ deviation from SM in the rate
• Meson mixin	g ~ 10% deviations from SM both in $\Delta M_{Bs} \& \Delta M_{Bd}$
• τ decays	$\tau \rightarrow 3\mu$ not far from present exp. Bound (BR ~ 10 ⁻⁹)

Simplified dynamical models

While the EFT is useful to derive relation among low-energy observables, simplified dynamical models with explicit mediators are particularly useful to

- reduce the number of free parameters
- check the consistency with high-energy data (*that is very relevant*...)
- identify possible UV completions

I. <u>The triplet-vector model</u>

e

```
Greljo, GI, Marzocca '15
Boucenna et al. '16
```

First concrete dynamical model addressing all anomalies !

• The leading effective triplet operator is the result of integrating-out a heavy SU(2)_L-triplet of vector bosons (W', Z') coupled to a single current:

$$J^a_\mu = g_{\ell} \lambda^q_{ij} \left(\bar{Q}^i_L \gamma_\mu T^a Q^j_L \right) + g_{\ell} \lambda^\ell_{ij} \left(\bar{L}^i_L \gamma_\mu T^a L^j_L \right) \quad \longrightarrow \quad \frac{1}{2m_V^2} J^a_\mu J^a_\mu$$

- Flavor on-Universal flavor structure of the currents:
 - \rightarrow Coupling to 3rd generations not suppressed
 - \rightarrow Coupling to light generations controlled by small U(2)_q × U(2)_l breaking

<u>Overall goof fit of the data</u> (that improves if the anomaly on R_D would decrease)

G. Isidori – LFU violations and Flavor Symmetries

Simplified dynamical models

II. LQ models

Long list of literature.....

- The leading effective triplet operator is the result of integrating-out Lepto-Quark (LQ) fields
- Flavor on-Universal flavor structure of the currents:
 → Coupling to 3rd generations not suppressed
 → Coupling to light generations controlled by small U(2)_q × U(2)₁ breaking

Only <u>Vector LQ</u> produce a very good fit of both R_{K^*} and R_D (*without extra tuning*)

- *Problem in Bs mixing less severe than in the vector triplet* (loop level)
- Problem in (radiatively induced) $\tau \rightarrow lvv$ more severe

Simplified dynamical models

In both cases (heavy vector triplets & vector LQ) we should address two basic questions:

- Are these models compatible with high-energy (direct) searches?
- Can we find meaningful UV completions?

Simplified dynamical models

In both cases (heavy vector triplets & vector LQ) we should address two basic questions:

• Are these models compatible with high-energy (direct) searches? Yes, but...

In both cases no real problem provided we are in a regime of <u>strong-coupling</u> [large couplings \rightarrow heavy masses & large widths].

E.g.: the heavy vectors could have a mass ~ 1-2 TeV (*not easily detectable due to small coupling to light quarks & large width*)

In both cases there is a model-independent expectation of sizable (broad) excess in $pp \rightarrow \tau\tau \& pp \rightarrow bb$, tt that should be accessible in Run-II

Already some tension with ATLAS & CMS.
Deviations from SM around the corner... G. Isidori – LFU violations and Flavor Symmetries

Simplified dynamical models

Recast of recent ATLAS searches of $Z'\to\tau\tau$

G. Isidori – LFU violations and Flavor Symmetries

Simplified dynamical models

Recast of recent ATLAS searches of $Z' \rightarrow \tau \tau$ interpreted in the vector LQ model

Simplified dynamical models

In both cases (heavy vector triplets & vector LQ) we should address two basic questions:

- Are these models compatible with high-energy (direct) searches? Yes, but...
- Can we find meaningful UV completions? Maybe...

An attractive possibility is to consider these heavy (spin-1) mediators as composite state of some new strong dynamics

 \rightarrow Gripajos, Panico & Quiros talks

Buttazo, Greljo, GI, Marzocca, '16 (backup slides)

- <u>Very interesting hints of LF non Universality</u> in recent semi-leptonic B-physics data
- The overall picture is still far form being clear, <u>but the patter of anomalies is</u> <u>apparently coherent</u>→ more data can help to clarify the situation
- EFT based on $U(2)^n$ + NP coupled mainly to 3^{rd} gen. quite successful
- Main messages in view of future data:
 - Plenty of interesting LFU tests in B physics still to be performed
 - The search for LFV in charged leptons is extremely well motivated
 - The interplay of low- and high-energy searches is essential
 [tau physics at high p_T]

which can be ameliorated including extra contributions (e.g. $SU(2)_L$ singlets Z' or color-octet)

0.0

 ϵ_q

-0.5

0.5

1.0

-1.0

-1.5

-1.0

I. $B \rightarrow D^{(*)} \tau v$ [LHCb, Belle]

Test of LFU in charged currents [τ vs. light leptons (μ , e)]:

0.5

- SM prediction quite solid: f.f. uncertainty cancel (to a good extent...) in the ratio
- Consistent exp. results by 3 (very) different experiments
 - 4σ excess over SM (if D and D* combined)
 - The two channels are well consistent with a <u>universal enhancement</u> ($\sim 30\%$) of the SM $b_{\rm L} \rightarrow c_{\rm L} \tau_{\rm L} v_{\rm L}$ amplitude (*RH or scalar amplitudes disfavored*)

II. Anomalies in $B \rightarrow K^{(*)} \mu \mu / ee [LHCb]$

But the most interesting effects in $b \rightarrow sll$ transitions are deviations from μ/e universality in the "clean" ratios $R_K \& R_{K*}$ (combined effect exceeding 3σ) :

Various "*instant papers*" have updated the fit to $b \rightarrow sll$ Wilson coeff.

Main messages:

- Low-q² bin a bit too low (the central value cannot be explained by NP – but there the theory error is larger...)
- <u>All the rest perfectly consistent</u> with what we already knew:
- All anomalies are well described assuming NP only in b→sµµ
- Stronger indication in favor of V-A interaction

Altmannshofer, Stangl, Straub '17

UV completions and high-energy bounds

The basic construction is based on the idea of "*Vector-like confinement*"

- Very similar to the old idea of technicolor
- Key difference is that the SSB of the new sector preserves the SM gauge symmetry, that is broken in a 2nd step by an appropriate Higgs field

G. Isidori – LFU violations and Flavor Symmetries

G. Isidori – LFU violations and Flavor Symmetries

UV completions and high-energy bounds

G. Isidori – LFU violations and Flavor Symmetries

UV completions and high-energy bounds

