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LNU

The same yet not the same




Iff R, Ri+ # 1 it would not only be a (loud) breakdown of the SM, it
tells us something about flavor — hope to learn something about
flavor

Ry, Rk« today: Face-value interpretations (popular)
Cl =—Cly~—06vs CfM ~ —CoM ~ 4
about 20 % BSM contribution to Oy, = 57, Lbl~y* L.

this is actually exactly according to the program behind testing the
SM with FCNCs. They are suppressed (GIM,CKM,loop) in SM and
BSM physics can show up without big competition.
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Tree Ievel explanations
A2 1 * 1
M2 75 mW 6z Vi Vi ~ (30TeV)?

with order one couplings this points to a collider-mass scale.

. _ )\2 N l g4 1 - 1
with (minimal) flavor = S Tox2 ™ GTeV)E

this is within reach of the LHC

Flavor models that explain quark, lepton masses, CKM, PMNS the
BSM couplings can be furthers suppressed — lower BSM mass.




Mass scales versus couplings

Y, Y, —Ype Y2 .
RK,K*: bu 7\42 b ~ W : (Sg) scalar trlplet GH, Nisandzic, 1704.05444
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red: explains Rx, Rk =, blue: allowed by Bs mixing, green: flavor model prediction

Yoao ~cry Ygo o~ X2, qz3=0bt, go=s,c, \c; <0.2 pointsto low mass!

Model-independent upper limit by B,-mixing oc A*/M? at 40 TeV.




RK(*) and RD(*)

The expected mass scale depends on flavor.

The size of the effect — current hints for SM deviation — in R (x) is
"natural”, in the center of parameter space. How about Rp(x)?
tree-level in SM, similar order of anomalous data as R (x) implies
large couplings and very low BSM: see talk by Y.Soreq and G.lsidori,A.Crivellin

gen minimal PMNS/CKM
Ri(x)tree | 30 TeV | 6 TeV few TeV
Ry (x) loop | few TeV | 0.5 TeV | expected similar to Rp(x)
Rp(x)tree | ~aTeV | 0.3 TeV not viable 1609.08895

Linking the anonalies is intruiging however not straigthforward, lower
deviation in Rp(x), in particular Rp*x would be more "natural”.
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RS) from leptoquarks with flavor?
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RD(*) = Rp(s) /R%l\f*); star: SM, grey: exp 1o band (too far away from SM to
fit the plot); red:V;,blue V3, green S5 LQs with flavor patterns, constraints:
rare K decays, u — e conversion, B — Kvv, perturbativity
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RK (+)
e triggered different type of model-building Z’, leptoquarks
e its plausible
e its an opportunity
e how to consolidate? rule out?

e If this really stays, decipher




LNUINb — s

1. Study more ratios and more precisely including in high ¢* bins see
talks by M.Schune,M.Patel

__ B(B—Hpp) __ * .
RH — B(B%ﬁee)’ H — K,K ,XS,... GH, Krtiger '03

At linear approximation it suffices to measure 2 different (by spin
parity of final hadron) Ry ratios and then all others serve as
consistency checks 1411.4773.

C+C: KK, ...
C — O/ . K0(1430), S,”, c.

and at both high and low ¢* windows K* subleading, predictions:
Rk ~ R, R+ ~ Ro >~ Rg,1430) and all Ry equal if no V+A currents.




LNUINb — s

The measurement of Rx and Ry~ does this diagnozing job. SM-like
chirality operators are the dominant source behind the anomalies.
Prediction: Ry, ~ 0.73 £ 0.07 inclusive decays, Belle Il
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Green band: Rx 1 o LHCb, blue band R+ 1 o LHCb. Different BSM scenarios are red dashed: pure

Cr1. (LQtriplet). Black solid: Cr,;, = —2Cgry.. Blue: Cr, (LQ dublet)/disfavoured as doninant source.
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electrons and/or muons?

Ry < 1: too few muons, or too many electrons, or combination
thereof.

2. To disentangle this lepton specific modes are required.

B — Hee and B — Hpuu studies; global fits see talks by
K.Petridis,N.Mahmoudi,J.Virto,s.Jager

It is interesting that also B — K, K*upu has presently an anomaly,
that even can point to the same direction as Ry x~.

LNU in explicit models can be arranged by gauging lepton flavor
(Z"); LQs can be charged under flavor group. see talks by

D.Straub,J.Fuentes,F.Bishara, M.Quiros, G.Panico
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LFV

From a flavor perspective, LNU quite generically implies LFV

Guadagnoli, Kane

3. Search for LFV

in B-decays, in charm decays, and with charged leptons (i -e
conversion, rare decays) see ttalks by Crivellin, Paradisi

12



LNU 1 vs ¢, LQS

()‘qw )‘qlu )‘QN'\
Leptoquark coupling matrix: Ay = | Ae Ao Agor

\)‘%6 )‘Q:su )‘Q:ﬂ/

columns=leptons
rows=quarks
structures not present in standard model!
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LNU 1 vs ¢, LQS

columns=leptons, discrete non-abelian flavor symmteries
(sub-groups of SU(3)), e.g.. A,) "zeros and ones”

Rows=quarks, hierarchical, U(1)-Froggatt-Nielsen-Symmetry
L>p> pyg

We can use these symmetries to explain quark and lepton
properties. Then predict the leptoquark coupling, e.g.,

[ pa P pa ) /OPdO\

A~ oo op | 0 p 0 |,
\1 1 1/ \o1o0)

second matrix can explain Rx — leptoquark couples to muons only.
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Diagnosing quark and lepton flavor

Very general ansatz 1s0s.010s4

\ (Pdli Pd ,Od\
™~ Pk P P
\ Mg Aap Agar / ko101 )
rows =quarks, columns= leptons

()‘qw )\CI1/~L )‘QN
LQ coupling matrix: Ay = [ A,e Ay Agor

data:
pa $0.02, £<05, 107 <p<S1, k/pS05, pg/pS16.

Froggatt-Nielsen:
pr~et pg~eoret, (Qr) pre€ pg~eore’, (Dg)with e~ 0.2.
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LFV

observable current 90 % CL limit constraint future sens.
B(u — e) 5.7-10~13 MEG AgeAl,l < ﬁ 610~ 14 MEG
2
B(T — G’Y) 1.2 - 10_8 Be”e |)\qe)\27-| 5 (11]%—\/)2
2
B(T — p) 4.4 - 108 Babar Aqurir| S (O%—GV)Q 5-1079 [B2]
B(t — un) 6.5 - 103 Belle Asp | < % 2.10~9 [B2]
2
B(B — K:uieq:) 3.8 -10~° BaBar \/|>‘3N>\ze|2 + |>‘b,u>‘§e|2 S (19.%1‘e\/)2
2
B(B — Kr%eF) 3.0-10~% PDG \/|ASTA;;€|2 +Mor A S g
2
B(B — Ku*r¥) 4.8 -10~° PDG \/|ASW\;’;T|2 + | App A |2 S (291‘%—6\,)2 < 106 K.Petridis

B(B — muteT)

9.2-10—8 BaBar

M2

\/|>‘du)‘ze|2 + |>\bﬂ>\:<le|2 N (15.6 TeV)2

Table 1 . Selected LFV data, constraints and future sensitivities. Here, qg = d,s,b. The Belle Il projections [B2] are for

50 ab— 1. For the constraint from B(T — wpn) we ignored the possibility of cancellations with AdMAZT, see e.g., [?]. We ignore tuning

between leading order diagrams in the ¢ — ¢/~ amplitudes. Rz : 0.7 < Re[Age NS, — Asu\f

M2

*
AapAspl 3 (183TeV)2

(24TeV)?

M?2 ~

1.5, K-decays
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LFV

predictions:
B(B — Ku©eT) ~3.107°&? (1 (;;;KY , (1)
B(B — Ke*rT) ~ 21078 x* (1 (;2}51{)2 , (2)
B(B— KutF)~2.1078 (1 (IQ?K)Q , (3)
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LFV
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LFV

asymmetric branching ratios:

B(B, = (T0'~) m

SN

~ . Left-h I I
BB, = (- 07) = m2 eft-nanded leptons only (8)
B(B, — pute) , (1—Rg\’
~ (.01 K~ -
B(Bs — putpu=)sum 001k 0.23 ’ ©)
- o 2
B(Bs — putpu=)sm 0.23

(11)

B(BS%T+,LL_) ~ 4 1 — Rk °
B(Bs — ptu=)sm 0.23 ’
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Impact on ¢ — ull?
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Resonance contributions vs BSM
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BSM windows in D — wl*l~ branching ratios at high and very low ¢*
only; BSM Wilson coefficients need to be very large, ~ 1.

CE(¢? = 1.5GeV?)| ~ 0.8 versus |C7 M (g2 > 1GeV?)| < 5-107%.

To observe BSM in rare charm either i) BSM is very large (plot to the
right) or ii) contributes to SM null tests (LFV, LNU, CP, angular distr.)
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Bottom-up leptoquark effects

Sample flavor patterns of leptoquark coupling matrix A (rows=quark
flavor, columns=Ilepton flavor) that follow from U (1) x A,

/pd/ipdpd\ /O*O\ (*OO\

My~ pg p p |, Mg~ 0 % 0|, Apg~]| 0 % 0

ko011 \0 = 0 \ 0 0
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Predictions for charm decays

B(DT = ntpuTpu™) B(DY — pTpu™) B(DT — 7T+6:l:/L:F) B(DY — ,u:te:F) B(DT — ntui)
i SM-like SM-like <2.10713 <7.1071° <3.10713
i) | <7-1078(2-1078) <3.107° 0 0 <8.1078
ii.2) SM-like <4.10713 0 0 <4.10712
i.1) SM-like SM-like <2.107° <4.10°8 <2.107°6
ii.2) SM-like SM-like <8-1071° <2.10716 <9.1071°

Table 2: Branching fractions for the full g?-region (high ¢2-region) for different classes of leptoquark
couplings. Summation of neutrino flavors is understood. "SM-like” denotes a branching ratio which is
dominated by resonances or is of similar size as the resonance-induced one. All ¢ — ue™e™ branching
ratios are "SM-like” in the models considered. Note that in the SM B(D° — ppu) ~ 10713,

LHCb: arXiv:1512.00322 [hep-ex] B(D°® — e u¥) < 1.3- 108 at 90 % CL

1): hierarchy, ii) muons only Iii) skewed, 1) no kaon bounds 2) kaon
bounds apply for SU(2).-dublets Q) = (¢, s)
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A leptoquark -triplet model

Scalar LQ S5(3,3,—1/3), C"* = —C;y * and M < 40 TeV and lower
with flavor considerations (similar for vector Lgs V; with M < 45 TeV
and , V5 with M < 20 TeV)

Decay modes of LQ-triplet (assuming Rk x~ from muons)

P = (t o)

e 13 = (bs)v, (te) pT

/3

— (b, s) pu~
other leptons (e, 7) equally interesting to probe flavor

4. Pursue dedicated collider searches (LQs: pair-productions, single
LQ prOdUC’[iOn) see talk by G.Isidori

more leptoquarks and Ry Fajfer, Kosnik Nisandzic, Gripaios, Nardeccia, Crivellin, Neubert, Renner, et al ..
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Summary

Current anomalies R, R+, Rp, Rp+ in semileptonic B-meson decays hint at violation of
lepton-universality — and therefore breakdown of standard model.

The recent release of R+ by LHCb has strengthened the hints and allows to pin down the Dirac
structure: predominantly V' — A-type.

Possible explanations naturally connect to the flavor puzzle; important to clarify the anomalies as
they can give new insights towards the origin of flavor and generational structure by probing
models of flavor.

Future data — LNU updates and other observables Rg, Rx s...— from LHCb and in the nearer
future from Belle Il (KEK, Japan) are eagerly awaited.

New BSM model-buildung (UV-completion ...) has been triggered that deserves attention in
direct searches at ALTAS and CMS.
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