Present Status of $b \rightarrow s \ell^+ \ell^-$ Anomalies

Nazila Mahmoudi

Lyon University & CERN

Based on arXiv:1705.06274, arXiv:1603.00865 & arXiv:1410.4545

Thanks to T. Hurth, S. Neshatpour, D. Martinez Santos and V. Chobanova

Instant workshop on B meson anomalies CERN, May 17-19, 2017

4 main LHCb anomalies:

- $B \to K^* \mu^+ \mu^-$ angular observables ($P_5' / S_5,...$): 3.4 σ tension __Jhep 1602, 104 (2016)
- BR $(B_s o \phi \mu^+ \mu^-)$: 3.2 σ tension in [1-6] GeV² bin JHEP 1509 (2015) 179
- $R_{K} = BR(B^{+} \to K^{+}\mu^{+}\mu^{-})/BR(B^{+} \to K^{+}e^{+}e^{-})$: 2.6 σ tension in [1-6] GeV² bin PRL 113, 151601 (2014)
- New! $R_K^* = BR(B^0 \to K^{*0}\mu^+\mu^-)/BR(B^0 \to K^{*0}e^+e^-)$: ~ 2.5 σ tension in [0.045-1.1] and [1.1-6] GeV² bins arXiv:1705.05802

Possible explanations:

- Statistical fluctuations \rightarrow seems unlikely
- \bullet Theoretical issues \rightarrow still unresolved
- New Physics! → seems plausible

In Summary:

O Update of the global fits

Important: 2 categories of observables:

- Theoretically clean ones, namely R_K and R_{K^*}
 - \rightarrow Combining the three measurements gives an SM deviation of 3.6 $\sigma.$
 - \rightarrow NP in $C_9^{e,\mu}$, $C_{10}^{e,\mu}$ are favoured (3.6 4.0 σ) and also $C_{LL,RR}^{e,\mu}$ (3.9 4.1 σ).
- Angular observables and branching ratios
 → Issue of hadronic uncertainties (only guestimates of non-factorisable power
 corrections at present)
 - \rightarrow C₉ and C₉^{μ} solutions are favoured (4.1 and 4.4 σ)

O LHCb upgrade prospects

 \rightarrow only part of the 50 fb⁻¹ is needed to establish NP in the $R_{K^{(*)}}$ ratios even in the pessimistic case that the systematic errors are not reduced by then at all.

 \rightarrow however, it would be difficult to differentiate between the NP hypotheses

Predictions for other ratios

- ightarrow Important to cross check with other muon vs electron ratios
- ightarrow Analysis of various observables to differentiate between different NP models
- ightarrow Additional inputs are required to pinpoint NP in electron or muon sectors

() Issue of the hadronic power corrections

Effective Hamiltonian for $b \rightarrow s$ transitions

$$\mathcal{H}_{\text{eff}}^{\text{sl}} = -\frac{\mathbf{4}G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=\mathbf{7,9,10}} C_i^{(\prime)} O_i^{(\prime)} \Big]$$

 $\langle \bar{K}^* | \mathcal{H}_{eff}^{sl} | \bar{B} \rangle: B \to K^*$ form factors $V, A_{0,1,2}, T_{1,2,3}$ Transversity amplitudes:

$$\begin{split} A_{\perp}^{L,R} &\simeq N_{\perp} \left\{ (C_{9}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{L,R} &\simeq N_{\parallel} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} \\ A_{0}^{L,R} &\simeq N_{0} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \left[(\dots) A_{1}(q^{2}) + (\dots) A_{2}(q^{2}) \right] \\ &+ 2m_{b} C_{7}^{-} \left[(\dots) T_{2}(q^{2}) + (\dots) T_{3}(q^{2}) \right] \right\} \\ A_{S} &= N_{S} (C_{S} - C_{S}') A_{0}(q^{2}) \\ &\left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}^{\prime} \right) \end{split}$$

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

$$\begin{split} \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1...6} C_i O_i + C_8 O_8 \right] \\ \mathcal{H}_{\lambda}^{\mathrm{(had)}} &= -i \frac{e^2}{q^2} \int d^4 x e^{-iq \cdot x} \langle \ell^+ \ell^- | j_{\mu}^{\mathrm{em}, \mathrm{lept}}(x) | \mathbf{0} \rangle \\ &\times \int d^4 y \, e^{iq \cdot y} \langle \tilde{\kappa}_{\lambda}^* | \, T \{ j^{\mathrm{em}, \mathrm{had}, \mu}(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(\mathbf{0}) \} | \tilde{B} \rangle \\ &\equiv \frac{e^2}{q^2} \epsilon_{\mu} \mathcal{L}_V^{\mu} \left[\underbrace{\mathrm{LO \ in} \ \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) \\ & \mathrm{Non-Fact., \ QCDf} \\ &+ \underbrace{h_{\lambda}(q^2)} \right] \\ & \mathrm{power \ corrections} \end{split}$$

() Issue of the hadronic power corrections

Effective Hamiltonian for $b \rightarrow s$ transitions

$$\mathcal{H}_{\text{eff}}^{\text{sl}} = -\frac{\mathbf{4}G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=\mathbf{7,9,10}} C_i^{(\prime)} O_i^{(\prime)} \Big]$$

 $\langle \bar{K}^* | \mathcal{H}_{eff}^{sl} | \bar{B} \rangle: B \to K^*$ form factors $V, A_{0,1,2}, T_{1,2,3}$ Transversity amplitudes:

$$\begin{split} A_{\perp}^{L,R} &\simeq N_{\perp} \left\{ (C_{0}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{L,R} &\simeq N_{\parallel} \left\{ (C_{0}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} \\ A_{0}^{L,R} &\simeq N_{0} \left\{ (C_{0}^{-} \mp C_{10}^{-}) \left[(\dots) A_{1}(q^{2}) + (\dots) A_{2}(q^{2}) \right] \right. \\ \left. + 2m_{b} C_{7}^{-} \left[(\dots) T_{2}(q^{2}) + (\dots) T_{3}(q^{2}) \right] \right\} \\ A_{S} &= N_{S} (C_{S} - C_{S}') A_{0}(q^{2}) \\ \left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}' \right) \end{split}$$

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

() Issue of the hadronic power corrections

Effective Hamiltonian for $b \rightarrow s$ transitions

$$\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} = -\frac{\mathbf{4}G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=\mathbf{7,9,10}} C_i^{(\prime)} O_i^{(\prime)} \Big]$$

 $\langle \tilde{K}^* | \mathcal{H}_{eff}^{sl} | \tilde{B} \rangle$: $B \to K^*$ form factors $V, A_{0,1,2}, T_{1,2,3}$ Transversity amplitudes:

$$\begin{split} A_{\perp}^{L,R} &\simeq N_{\perp} \left\{ (C_{0}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{L,R} &\simeq N_{\parallel} \left\{ (C_{0}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} \\ A_{0}^{L,R} &\simeq N_{0} \left\{ (C_{0}^{-} \mp C_{10}^{-}) \left[(\dots) A_{1}(q^{2}) + (\dots) A_{2}(q^{2}) \right] \\ &+ 2m_{b} C_{7}^{-} \left[(\dots) T_{2}(q^{2}) + (\dots) T_{3}(q^{2}) \right] \right\} \\ A_{S} &= N_{S} (C_{S} - C_{S}') A_{0}(q^{2}) \\ &\qquad \left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}' \right) \end{split}$$

$$\mathcal{H}_{\rm eff} = \mathcal{H}_{\rm eff}^{\rm had} + \mathcal{H}_{\rm eff}^{\rm sl}$$

$$\begin{aligned} \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} &= -\frac{4G_F}{\sqrt{2}} \, v_{tb} \, v_{ts}^* \left[\sum_{i=1...6} C_i \, O_i + C_8 \, O_8 \right] \\ \mathcal{A}_{\lambda}^{(\mathrm{had})} &= -i \frac{e^2}{q^2} \int d^4 x e^{-iq \cdot x} \, \langle \ell^+ \ell^- | j_{\mu}^{\mathrm{em}, \mathrm{lept}}(x) | \mathbf{0} \rangle \\ &\times \int d^4 y \, e^{iq \cdot y} \, \langle \bar{\kappa}_{\lambda}^* | \, T \, \{ j^{\mathrm{em}, \mathrm{had}, \mu}(y) \, \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(\mathbf{0}) \} | \bar{B} \rangle \\ &\equiv \frac{e^2}{q^2} \, \epsilon_{\mu} \, \mathcal{L}_V^{\mu} \left[\begin{array}{c} \mathrm{LO} \ \mathrm{in} \ O(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) \\ &\mathrm{Non-Fact., \ QCDf} \end{array} \right] \\ &\quad power \ \mathrm{corrections} \\ &\rightarrow \ \mathrm{unknown} \end{aligned}$$

The significance of the anomalies depends on the assumptions made for the unknown power corrections!

This does not affect R_K and R_K^* of course, but does affect the combined fits!

Best fit values in the one operator fit considering only R_K and R_{K^*}

	b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\mathrm{SM}}$		
ΔC_{α}	-0.48	18.3	0.3σ	b.f. value χ	$\binom{2}{\min}$ Pulls
$\Delta C'_{a}$	+0.78	18.1	0.5 <i>σ</i>	$\Delta C_{9}^{\mu} = -\Delta C_{10}^{\mu} (\Delta C_{LL}^{\mu}) -0.16$	3.4 <u>3.9</u>
ΔC_{10}	-1.02	18.2	0.5σ	$\Delta C_9^e = -\Delta C_{10}^e \ (\Delta C_{\rm LL}^e) \qquad +0.19$	2.8 4.0
$\Delta C'_{10}$	+1.18	17.9	0.7σ	$\Delta C_{9}^{\mu'} = -\Delta C_{10}^{\mu'} (\Delta C_{\rm RL}^{\mu})$ -0.01 1	18.3 0.4 <i>c</i>
ΔC_{0}^{μ}	-0.35	5.1	3.6 σ	$\Delta C_9^{e\prime} = -\Delta C_{10}^{e\prime} \left(\Delta C_{\rm RL}^e \right) + 0.01 \qquad 1$	18.3 0.4 <i>c</i>
ΔC_9^e	+0.37	3.5	3.9σ	$\Delta C_{9}^{\mu} = +\Delta C_{10}^{\mu} (\Delta C_{LR}^{\mu}) + 0.09$ 1	17.5 1.0 <i>c</i>
ΔC^{μ}_{10}	-1.66	2.7	4.0σ	$\Delta C_9^e = + \Delta C_{10}^e \left(\Delta C_{\rm LR}^e \right) \qquad -0.55$	1.4 4.1 <i>c</i>
	-0.34			$\Delta C_{9}^{\mu'} = +\Delta C_{10}^{\mu'} (\Delta C_{RR}^{\mu})$ -0.01 1	18.4 0.2 <i>c</i>
ΔC_{10}^e	-2.36 +0.35	2.2	4.0 σ	$\Delta C_9^{e\prime} = +\Delta C_{10}^{e\prime} \left(\Delta C_{\rm RR}^{e} \right) + 0.61$	2.0 4.1 <i>c</i>
				· · · ·	

 \rightarrow NP in C_9^e , C_9^μ , C_{10}^e , or C_{10}^μ are favoured by the $R_{K^{(*)}}$ ratios (significance: 3.6 - 4.0 σ).

- \rightarrow NP contributions in primed operators do not play a role.
- \rightarrow Among the chiral Wilson coefficients, C_{LL}^{μ} , C_{eL}^{e} , C_{LR}^{e} , and C_{RR}^{e} have a SM pull of 3.9 4.1 σ (the two latter however, lead to a very large NP shift in the Wilson coefficient.)

There are six favoured NP one-operator hypotheses to account for the deviations in the measured ratios $R_{\kappa^{(*)}}$.

Best fit values considering all observables besides R_K and R_{K^*} (under the assumption of 10% non-factorisable power corrections)

	b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_{\mathrm{SM}}$			b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_{\mathrm{SM}}$
ΔC_9	-0.24	70.5	4.1σ		$\Delta C_9^\mu = -\Delta C_{10}^\mu \ (\Delta C_{\rm LL}^\mu)$	-0.10	79.4	2.8σ
$\Delta C'_9$	-0.02	87.4	0.3σ		$\Delta C_9^e = -\Delta C_{10}^e \left(\Delta C_{LL}^e\right)$	+0.08	86.3	1.1σ
ΔC_{10}	-0.02	87.3	0.4σ		$\Delta C_9^{\mu\prime} = -\Delta C_{10}^{\mu\prime} \; (\Delta C_{\rm RL}^{\mu})$	-0.01	87.3	0.4 <i>o</i>
$\Delta C'_{10}$	+0.03	87.0	0.7σ		$\Delta C_9^{e\prime} = -\Delta C_{10}^{e\prime} \left(\Delta C_{\mathrm{RL}}^{e} \right)$	-0.01	87.0	0.7σ
ΔC_9^{μ}	-0.25	68.2	4.4σ		$\Delta C_9^\mu = + \Delta C_{10}^\mu \ (\Delta C_{\rm LR}^\mu)$	-0.12	79.5	2.8 σ
ΔC_9^e	+0.18	86.2	1.2σ		$\Lambda C^{e} - \pm \Lambda C^{e} (\Lambda C^{e})$	+0.50	85.8	1.3σ
ΔC^{μ}_{10}	-0.05	86.8	0.8σ	$\Delta c_9 = + \Delta c_{10} (\Delta c_{LR})$		-1.12	86.7	0.9 <i>σ</i>
A Ce	-2.14	06.2	11-		$\Delta C_{9}^{\mu\prime} = + \Delta C_{10}^{\mu\prime} \left(\Delta C_{\rm RR}^{\mu} \right)$	+0.03	87.1	0.6 <i>o</i>
Δc_{10}	+0.14	+0.14 80.3	1.10		$\Delta C_9^{e\prime} = +\Delta C_{10}^{e\prime} (\Delta C_{\rm RR}^e)$	-0.54	86.3	1.1σ

 \rightarrow C9 and C9 solutions are favoured with SM pulls of 4.1 and 4.4 σ

- \rightarrow Primed operators have a very small SM pull
- \rightarrow C10-like solutions do not play a role in this global fit.

Updated fits: two-operator fits

The two sets are compatible at least at the 2σ level.

 $\mathsf{Pull}_{\mathrm{SM}}$ for the fit of Wilson coefficients based on the ratios R_K and R_{K^*} LHCb upgrade scenarios with 50 fb^{-1} and 300 fb^{-1} luminosity collected, assuming current central values remain

50 fb ⁻¹	Syst.	Syst./2	Syst./3		200 fb ⁻¹	Syst.	Syst./2	Syst./3
50 10	$Pull_{\mathrm{SM}}$	$Pull_{\mathrm{SM}}$	Pull _{SM}		300 10	$Pull_{\mathrm{SM}}$	$Pull_{\mathrm{SM}}$	$Pull_{\mathrm{SM}}$
ΔC_9^{μ}	10.4 <i>o</i>	11.6σ	12.9σ]	ΔC_{9}^{μ}	9.4 σ	15.6σ	19.5σ
ΔC_9^e	10.9σ	12.3σ	13.6σ		ΔC_9^e	10.2 <i>σ</i>	16.6σ	20.4σ
ΔC_{10}^{μ}	11.1σ	12.6σ	13.9σ		ΔC_{10}^{μ}	10.6σ	17.0σ	20.8σ
ΔC_{10}^{e}	11.3σ	12.8σ	14.1σ		ΔC_{10}^{e}	10.9σ	17.2σ	21.1σ
ΔC^{μ}_{LL}	10.9σ	12.3σ	13.6σ]	ΔC^{μ}_{LL}	10.2σ	16.6σ	20.5σ
ΔC_{LL}^{e}	11.2σ	12.5σ	13.8σ		ΔC_{LL}^{e}	11.0 <i>σ</i>	16.9σ	20.8σ

The SM pulls for the 6 favoured one-operator NP hypotheses are all very similar in each of the upgrade scenarios.

 \rightarrow it would be difficult to differentiate between the NP hypotheses!

 \rightarrow Need other ratios!

 $3 \ \mathrm{fb}^{-1}$

12 fb⁻¹, syst errors/2

 12 fb^{-1} , syst errors/3

50 fb⁻¹, syst errors/2

50 fb⁻¹, syst errors/3

 3 fb^{-1}

 12 fb^{-1}

0.4 68% CL 95% CL 0.2 $\delta C_{9\,e}/C_{9}^{SM}$ 0.0 -0.2 -0.4-0.6-0.5 - 0.4 - 0.3 - 0.2 - 0.1 0.00.10.2 $\delta C_{9 \mu}/C_{9}^{SM}$

12 fb⁻¹, syst errors/2

12 fb⁻¹, syst errors/3

 50 fb^{-1}

0.4 68% CL 95% CL 0.2 $\delta C_{9\,e}/C_{9}^{SM}$ 0.0 -0.2 -0.4-0.6-0.5 - 0.4 - 0.3 - 0.2 - 0.1 0.00.10.2 $\delta C_{9 \mu}/C_{9}^{SM}$

50 fb⁻¹, syst errors/2

50 fb⁻¹, syst errors/3

 300 fb^{-1}

0.4 68% CL 95% CL 0.2 $\delta C_{9\,e}/C_{9}^{SM}$ 0.0 -0.2 -0.4-0.6-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.10.2 $\delta C_{9 \mu}/C_{9}^{SM}$

 300 fb^{-1} , syst errors/2

 300 fb^{-1} , syst errors/3

 3 fb^{-1}

0.4 68% CL 95% CL 0.2 $\delta C_{9\,e}/C_{9}^{SM}$ 0.0 -0.2-0.4-0.6-0.5 - 0.4 - 0.3 - 0.2 - 0.1 0.00.10.2 $\delta C_{9\mu}/C_9^{SM}$

assuming 10% power corrections (guesstimate)

 12 fb^{-1}

12 fb⁻¹, syst errors/2

12 fb⁻¹, syst errors/3

 50 fb^{-1}

Fit results using all $b \rightarrow s \ell^+ \ell^-$ observables

50 fb⁻¹, syst errors/2

50 fb⁻¹, syst errors/3

 300 fb^{-1}

Fit results using all $b \rightarrow s \ell^+ \ell^-$ observables

0.4 68% CL 95% CL 0.2 $\delta C_{9\,e}/C_{9}^{\rm SM}$ 0.0 -0.2-0.4-0.6-0.5 - 0.4 - 0.3 - 0.2 - 0.1 0.00.10.2 $\delta C_{9\mu}/C_9^{SM}$

 300 fb^{-1} , syst errors/2

300 fb⁻¹, syst errors/3

 12 fb^{-1} , syst errors/2

 12 fb^{-1} , syst errors/3

50 fb⁻¹, syst errors/2

50 fb⁻¹, syst errors/3

2 LHCb upgrade prospect: two operator results, C_9^{μ} - C_{10}^{μ} fits

Fit results using all $b \rightarrow s \ell^+ \ell^-$ observables but R_K and R_{K^*}

2 LHCb upgrade prospect: two operator results, C_9^{μ} - C_{10}^{μ} fits

Fit results using all $b \rightarrow s \ell^+ \ell^-$ observables but R_K and R_{K^*}

 12 fb^{-1} , syst errors/2

12 fb⁻¹, syst errors/3

2 LHCb upgrade prospect: two operator results, C_9^{μ} - C_{10}^{μ} fits

Fit results using all $b \rightarrow s \ell^+ \ell^-$ observables but R_K and R_{K^*}

50 fb⁻¹, syst errors/2

50 fb⁻¹, syst errors/3

 300 fb^{-1} , syst errors/2

 300 fb^{-1} , syst errors/3

0.3 68% CL 0.2 95% CL $\begin{array}{c} 1.0 \\ \delta C_{10\,\mu}/C_{10}^{\rm SM} \\ 0.0 \\ 1.0 \\ 0.1 \end{array}$ -0.2-0.3-0.5 - 0.4 - 0.3 - 0.2 - 0.1 0.00.1 0.2 $\delta C_{9\mu}/C_9^{SM}$

 12 fb^{-1} , syst errors/2

0.3 68% CL 0.2 95% CL $\begin{array}{c} 1.0 \\ \delta C_{10\,\mu}/C_{10}^{\rm SM} \\ 0.0 \\ 1.0 \\ 0.1 \end{array}$ -0.2-0.3-0.5 - 0.4 - 0.3 - 0.2 - 0.1 0.00.1 0.2 $\delta C_{9\mu}/C_9^{SM}$

12 fb⁻¹, syst errors/3

0.3 68% CL 0.2 95% CL $\begin{array}{c} 1.0 \\ \delta C_{10\,\mu}/C_{10}^{\rm SM} \\ 0.0 \\ 1.0 \\ 0.1 \end{array}$ -0.2-0.3-0.5 - 0.4 - 0.3 - 0.2 - 0.1 0.0 0.10.2 $\delta C_{9\mu}/C_{9}^{SM}$

50 fb⁻¹, syst errors/2

0.3 68% CL 0.2 95% CL $\begin{array}{c} 1.0 \\ \delta C_{10\,\mu}/C_{10}^{\rm SM} \\ 0.0 \\ 1.0 \\ 0.1 \end{array}$ -0.2-0.3-0.5 - 0.4 - 0.3 - 0.2 - 0.1 0.0 0.10.2 $\delta C_{9 \mu}/C_{9}^{SM}$

50 fb⁻¹, syst errors/3

assuming 10% power corrections (guesstimate)

 300 fb^{-1} , syst errors/2

 300 fb^{-1} , syst errors/3

Outcome of the exercise:

The $(C_9^e - C_9^\mu)$ fit tells us that:

Based on only R_K and R_{K^*} , assuming the current central values remain

just with 12 fb^{-1} we show that New Physics scenarios

can improve the fit over the SM by 6.4 σ !

Predictions of ratios of observables with muons in the final state to electrons in the final state, based on the ratios R_K and R_{K^*} in the 95% confidence level, considering one operator fits.

	$R^{[1.1,6.0]}_{A_{FB}}$	$R_{S_{5}}^{[1.1,6.0]}$	$R_{F_L}^{[1.1,6.0]}$	$R_{K^*}^{[15,19]}$	$R_{\phi}^{[1.1,6.0]}$	$R_{\phi}^{[15,19]}$
C _{LL}	[−1.52, −0.21]∪	[0.36, 0.37]∪	[0.96, 0.97]∪	[0.53, 0.84]	[0.41, 0.56]∪	[0.52, 0.84]∪
	[-0.0430, -0.0427]	[0.65, 0.86]	[1.47, 1.59]	[0.53, 0.78]	[0.54, 0.85]	[0.53, 0.77]
C^{μ}_{LL}	[2.51, 7.50]	[0.29, 0.83]	[0.90, 0.97]	[0.52, 0.85]	[0.58, 0.86]	[0.52, 0.85]
C_9^e	[-0.46, -0.14]	[0.59, 0.76]	[0.91, 0.95]	[0.52, 0.84]	[0.56, 0.87]	[0.52, 0.84]
C_9^{μ}	[4.05, 19.16]	[-1.45, 0.64]	[0.71, 0.94]	[0.57, 0.87]	[0.74, 0.90]	[0.57, 0.87]
C ₁₀	[−1.10, −0.95]∪	$[-1.19, -1.03] \cup$	[0.99, 1.02]∪	[0.53, 0.84]∪	[0.52, 0.83]∪	[0.53, 0.84]∪
	[0.95, 1.10]	[1.03, 1.19]	[0.99, 1.02]	[0.53, 0.84]	[0.52, 0.83]	[0.53, 0.84]
C^{μ}_{10}	[−0.93, −0.70]∪	$[-1.01, -0.75] \cup$	[1.00, 1.06]∪	[0.53, 0.84]∪	[0.52, 0.84]∪	[0.53, 0.84]∪
	[0.70, 0.93]	[0.75, 1.01]	[1.00, 1.06]	[0.53, 0.84]	[0.52, 0.84]	[0.53, 0.84]

Important cross check will become possible in the future $R_{A_{FB}}$ has already the potential to differentiate between different hypothesis

To conclude...

- Still some tensions with the SM predictions in the full LHCb Run 1 results in the angular observables in $B \to K^* \mu \mu$ decays and branching ratios of $B_s \to \phi \mu \mu$
- Significance of these anomalies depends on the assumptions on the power corrections
- \bullet claims of $>5\,\sigma$ deviations from the SM based on all observables including $R_{K^{(*)}}$ ratios are misleading
- To resolve the issue of power corrections:
 - In principle there are methods on the market to replace the guesstimates of power corrections to real estimates
 - \rightarrow more effort here is needed
 - ${\scriptstyle \bullet}\,$ The LHCb upgrade can provide enough precision to establish the NP option
- The future measurements of the clean R_X ratios have the potential to unambiguously establish lepton non-universal new physics in the near future
- Such a finding can indirectly establish the new physics explanation of the present anomalies in the less clean observables if there is a coherent NP picture of both sets of observables.

Backup

Global fits

Global fits of the observables by minimisation of

$$\chi^2 = \big(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\big) \cdot (\Sigma_{\texttt{th}} + \Sigma_{\texttt{exp}})^{-1} \cdot \big(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\big)$$

 $(\Sigma_{\tt th}+\Sigma_{\tt exp})^{-1}$ is the inverse covariance matrix.

More than 100 observables relevant for leptonic and semileptonic decays:

- $BR(B \rightarrow X_s \gamma)$
- BR($B \rightarrow X_d \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_{\mathfrak{s}} \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_{\mathfrak{s}} \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s e^+ e^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)
- BR($B \rightarrow K^{*+} \mu^+ \mu^-$)

- BR($B \rightarrow K^0 \mu^+ \mu^-$)
- BR($B \rightarrow K^+ \mu^+ \mu^-$)
- BR($B \rightarrow K^* e^+ e^-$)
- *R*_{*K*}
- $B \to K^{*0} \mu^+ \mu^-$: *BR*, *F_L*, *A_{FB}*, *S*₃, *S*₄, *S*₅, *S*₇, *S*₈, *S*₉ in 8 low *q*² and 4 high *q*²bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L , , S_3 , S_4 , S_7 in 3 low q^2 and 2 high q^2 bins

Calculations done using SuperIso

Dilepton invariant mass spectrum: $\frac{d\Gamma}{dq^2} = \frac{3}{4} \left(J_1 - \frac{J_2}{3} \right)$

Forward backward asymmetry:

$$A_{\rm FB}(q^2) \equiv \left[\int_{-1}^0 - \int_0^1\right] d\cos\theta_l \frac{d^2\Gamma}{dq^2 d\cos\theta_l} \left/ \frac{d\Gamma}{dq^2} = \frac{3}{8} J_6 \right/ \frac{d\Gamma}{dq^2}$$

Forward backward asymmetry zero-crossing: $q_0^2 \simeq -2m_b m_B \frac{C_9^{\text{eff}}(q_0^2)}{C_7} + O(\alpha_s, \Lambda/m_b)$ \rightarrow fix the sign of C_9/C_7

Polarization fractions:

$$F_L(q^2) = \frac{|A_0|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}, \ F_T(q^2) = 1 - F_L(q^2) = \frac{|A_{\perp}|^2 + |A_{\parallel}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

$$\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \\ \langle P'_4 \rangle_{\text{bin}} = \frac{1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \qquad \langle P'_5 \rangle_{\text{bin}} = \frac{1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \\ \langle P'_6 \rangle_{\text{bin}} = \frac{-1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \qquad \langle P'_8 \rangle_{\text{bin}} = \frac{-1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_8 + \bar{J}_8]$$

with

$$\mathcal{N}_{\mathrm{bin}}' = \sqrt{-\int_{\mathrm{bin}} dq^2 [J_{2s} + \bar{J}_{2s}] \int_{\mathrm{bin}} dq^2 [J_{2c} + \bar{J}_{2c}]}$$

+ CP violating clean observables and other combinations

U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104 S. Descotes-Genon et al., JHEP 1305 (2013) 137

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- \bullet 2 \times form factor errors (dashed line)
- $\bullet~$ 4 \times form factor errors (dotted line)

T. Hurth, FM, S. Neshatpour, Nucl. Phys. B909 (2016) 737
Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- 2 \times form factor errors (dashed line)
- $\bullet~$ 4 \times form factor errors (dotted line)

T. Hurth, FM, S. Neshatpour, Nucl. Phys. B909 (2016) 737

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- 2 \times form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

T. Hurth, FM, S. Neshatpour, Nucl. Phys. B909 (2016) 737

The size of the form factor errors has a crucial role in constraining the allowed region!

Role of S_5

Removing S_5 from the fit:

While the tension of $C_9^{\rm SM}$ and best fit point value of C_9 is slightly reduced in the various two operator fits, still the tension exists at more than 2σ

 \rightarrow S₅ is not the only observable which drives C₉ to negative values!

Nazila Mahmoudi

CERN, May 18, 2017