FCNC top decay t -> c y @ 380 GeV

Naomi van der Kolk 29.08.2017 CLICdp Collaboration Meeting

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

FCNC top decay

- Standard model prediction of top quark decay into up-type quarks only via higher order loops, branching ratio ~ 10^{-14}
- In BSM models the branching ratio is significantly increased by either allowing tree level processes (2HDM, exotic quarks) or enhancing the loop diagrams (MSSM, R violating SUSY, 2HDM)
- Observation of FCNC processes would indicate new physics
- Decay channel of interest: t -> c γ Has a clear experimental signature
- Investigate the capability of observing/exclu process with CLIC

Update on FCNC t->cγ decay at 380 GeV - CLICdp meeting August 2017 - Naomi van der Kolk

Figure 1.3: Feynman diagrams for the $t \to qZ$ FCNC decay. (a) Shows a tree level (first order) diagram which is absent in the standard model. (b) Shows an example of a higher order loop diagram, a.k.a. penguin diagram, which is allowed.

	Mode	SM	MSSM	R SUSY	Exotic quarks
ding this	t -> c γ	4.6 10-14	2 10-6	1 10 ⁻⁶	7.5 10 ⁻⁹

2HDM

~10-6

- Most recent result from CMS in proton-proton at 8 TeV (single top production in association with a photon)
 - JHEP 04 (2016) 035, arXiv:1511.03951
- Expected limits for CMS @ HL-LHC B(t-> $c\gamma$) < 3.4 10⁻⁴ ~ 2.0 10⁻⁴ for 3 ab⁻¹ at 14 TeV
- Limit on the branching ratio $B(t \rightarrow c\gamma) < 1.7 \ 10^{-3}$, currently most stringent limit
 - CMS-DP-2016-064
- Aim: find the expected limit on $B(t->c\gamma)$ at lepton colliders

Update on FCNC t->cγ decay at 380 GeV - CLICdp meeting August 2017 - Naomi van der Kolk

Limits from LHC

Analysis setup

- Top pair production @ 380 GeV Signal generated in Whizard 2.2.8 in 2HDM(III) model, $B(t > c\gamma) = 0.1\%$ Reconstruction in CLIC_ILD detector model
- Fully hadronic decay channel: One top decays into **c y**, the other to **W b** (standard decay)
- Event signature:
 - a high energy photon (50 140 GeV) a high energy c-jet (50 - 140 GeV) a b-jet two more light jets from W decay

Update on FCNC t->cγ decay at 380 GeV - CLICdp meeting August 2017 - Naomi van der Kolk

Analysis setup

- Using ILCSoft v01-17-09
- Event reconstruction in PandoraPFA (LooseSelectedPandoraPFANewPFOs) \bullet
- Select high energy photon with E > 50 GeV (reject events without)
- Search for isolated leptons
- Kinematic reconstruction of top pairs
- Signal and background X²
- Multivariate analysis (TMVA) to select signal and background

 $\chi^2_{backgro}$

Update on FCNC t->cγ decay at 380 GeV - CLICdp meeting August 2017 - Naomi van der Kolk

• Vertexing, jet reconstruction and flavour tagging with LCFI+ using the Valencia jet clustering algorithm

$$\chi^2_{signal} = \frac{(m_{top1} - 172.5)^2}{(10.0)^2} + \frac{(m_{top2} - 172.5)^2}{(7.0)^2} + \frac{(m_W - 80.4)^2}{(6.0)^2}$$

$${}_{ound} = \frac{(m_{top1} - 172.5)^2}{(11.0)^2} + \frac{(m_{top2} - 172.5)^2}{(13.0)^2} + \frac{(m_W - 80.4)^2}{(6.0)^2} + \frac{(m_W - 80.4)^2}$$

Test samples

- 5489 signal events
- 296500 ttbar background events from standard MC production
- Preselect events with a high energy photon, E > 50 GeV
 - keeps 92% of signal and 5% of background

Update on FCNC t->cy decay at 380 GeV - CLICdp meeting August 2017 - Naomi van der Kolk

(Signal sample (6-fermion production compatible with ttbar) at 380 GeV assuming unpolarised beams)

- TMVA to select signal and background: Boosted Decision Tree (BDT)
- Only for events with a photon with E > 50 GeV-> low statistics: 2526 signal and 7765 background events
- 42 input variables (photon properties, jet properties, flavour tagging, invariant mass etc.) -> overtraining?

Update on FCNC t->cγ decay at 380 GeV - CLICdp meeting August 2017 - Naomi van der Kolk

TMVA

Invariant mass

Update on FCNC t->cγ decay at 380 GeV - CLICdp meeting August 2017 - Naomi van der Kolk

CLICdp **Work in Progress**

Signal and background fractions

- Background at maximally 10-3
- BDT cut needs to be optimised
- Limits: 95% CL on B(t-> $c\gamma$) @ 500 fb⁻¹ BDT > 0.2 : 1.9 10⁻⁴ $BDT > 0.35 : 4.4 \ 10^{-5}$

CLICdp	1	1	
Work in Progress	Signal	Background	
high energy photon	0.92	0.052	
BDT > 0.0	0.918	0.04495	
BDT > 0.05	0.868	0.02241	
BDT > 0.1	0.796	0.00966	
BDT > 0.15	0.703	0.00489	
BDT > 0.2	0.599	0.0018	
BDT > 0.25	0.468	0.0009	
BDT > 0.3	0.320	0.00026	
BDT > 0.35	0.183	0.0	
Total	0.84 - 0.17	0.0023 - 0.0	

Next steps

- Current results hint at a good sensitivity to this channel at 380 GeV
- Limits of the order of 10^{-4} are feasible
- To do
 - Include e^+e^- ->qqqq sample at 380 GeV (needs to be generated)
 - Further improve background rejection / signal selection
 - Optimise TMVA approach
 - Apply same analysis to 500 GeV for ILC limits

Update on FCNC t->cγ decay at 380 GeV - CLICdp meeting August 2017 - Naomi van der Kolk

CLICdp **Work in Progress**

Thank you for your attention

Identifying high energy photon

• The photon from the FCNC decay can be identified with high efficiency

Update on FCNC t->cγ decay at 380 GeV - CLICdp meeting August 2017 - Naomi van der Kolk

12

B tag of selected C jet

Cut based signal and background fractions

CLICdp Work in Progress	signal	back- ground	semi- Ieptonic	leptonic	qqqq
Accepted fraction	0.3050	0.0027	0.0002	0	0.0014
signal	0.2510	0.0004	0.000045	0	0.0003
background	0.0539	0.0023	0.00015	0	0.0011

- Signal efficiency 25%
- Leptonic and semi-leptonic background events $\sim 10^{-5}$
- Hadronic background events ~ 10^{-4}

Update on FCNC t->cγ decay at 380 GeV - CLICdp meeting August 2017 - Naomi van der Kolk

• Based on these efficiencies limits on B(t-> $c\gamma$) of the order of 10^{-4} are feasible

14