Status of ee $\rightarrow \gamma \gamma$ analysis

CLICdp Workshop 29.08.2017

Igor Boyko, Yura Nefedov JINR/Dubna

What is new

- Data analysis unchanged: used old ILD and SiD samples, ee→γγ at 3 TeV
- Before the data were interpreted in terms of QED cut-off model (finite electron size)
- Today present interpretations with more New Physics models:
 - Dimension-7 lagrangian contact interaction
 - Quantum gravity in space with extra dimensions
 - Excited electron exchange

Reminder: event selection

- Two photons, the most energetic above 1300 GeV, another above 1200 GeV
- No third photon above 50 GeV
- Back-to-back photons: ±10° in θ, ±10° in φ
- Track veto: no tracks with |p|>300 GeV/c within 20° from a photon candidate (even "bad tracks"!)

Data interpretation

- All results shown for 2000 fb⁻¹ at 3 TeV, SiD detector full simulation
- Systematic errors:
 - Polar angle misalignment by 1 mrad
 - Mistake in residual background level by 15%
- Luminosity precision: considered 4 scenarios
 - "Pessimistic", $\sigma(L)/L=10\%$
 - "Optimistic", $\sigma(L)/L=0.2\%$
 - -2 "realistic" scenarios: $\sigma(L)/L=1\%$ or 0.5%

Reference point: Standard Model

Igor Boyko

QED cut-off model

- Everything according to Standard Model, but electron is not point-like
- Charge distribution is exponential, with slope parameter Λ_{QED}
- LEP combined limit: $\Lambda_+>392$ GeV, $\Lambda_->364$ GeV

$$\left(\frac{d\sigma}{d\Omega}\right)_{\Lambda_{\pm}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Born}} \pm \frac{\alpha^2 s}{2\Lambda_{\pm}^4} (1 + \cos^2\theta)$$

QED cut-off: Fit to $1/\Lambda^4_{QED}$

σ(Lumi)	0.2%	0.5%	1%	10%
σ (stat) 10 ⁻⁴ TeV ⁻⁴	2.70	3.13	3.65	4.09
σ (syst) Bckg ±15%	0.35	0.36	1.35	2.25
σ (syst) θ ±1mrad	0.72	0.45	0.41	0.40
Λ _{QED} (95%CL)	6.52 TeV	6.33 TeV	6.01 TeV	5.74 TeV

eevy contact interaction

- Contact interaction can be introduced with dimension-7 lagrangian, effective scale Λ'
- Adds angular-independent cross-section term
- Combined LEP limit: Λ'>831 GeV

$$\mathscr{L}_{7} = \frac{1}{4} \bar{\psi} (g_{7}^{S} F^{\mu\nu} + \mathrm{i} g_{7}^{P} \gamma_{5} \tilde{F}^{\mu\nu}) \psi F_{\mu\nu}$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{\Lambda'} = \left(\frac{d\sigma}{d\Omega}\right)_{\mathrm{Born}} + \frac{s^{2}}{16} \frac{1}{\Lambda'^{6}}$$

Contact interaction: Fit to $(1/\Lambda^{2})^{6}$

σ(Lumi)	0.2%	0.5%	1%	10%
σ (stat) 10 ⁻⁶ TeV ⁻⁶	0.0050	0.0068	0.0108	0.0340
σ (syst) Bckg ±15%	0.0032	0.0030	0.0021	0.0255
σ (syst) θ ±1mrad	0.0025	0.0023	0.0024	0.0128
\wedge '	20.7	20.1	18.9	15.0
(95%CL)	TeV	TeV	TeV	TeV

Gravity in extra dimensions

- Plank mass (M_s) is in TeV scale. For us it appears to be much larger because we think that space-time is 4D.
- In fact, there are compactified extra dimensions. $ee \rightarrow \gamma\gamma$ spectrum is distorted by exchange of gravitons propagating in the extra dimensions
- LEP combined limit: M_s >933 GeV, M_s >1010 GeV (for $\lambda = \pm 1$)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm M_s} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Born} - \alpha s \, \frac{\lambda}{M_s^4} \, \left(1 + \cos^2\theta\right) + \frac{s^3}{8\pi} \, \frac{\lambda^2}{M_s^8} \left(1 - \cos^4\theta\right)$$

Igor Boyko

Extra dimensions: Fit to λ/M_s^4

σ(Lumi)	0.2%	0.5%	1%	10%
σ (stat) 10 ⁻⁴ TeV ⁻⁴	0.0683	0.0783	0.0889	0.0976
σ (syst) Bckg ±15%	0.0098	0.0067	0.0303	0.0537
σ (syst) θ ±1mrad	0.0216	0.0124	0.0034	0.0060
M _s /λ ¹ ⁄ ₄ (95%CL)	16.3 TeV	15.9 TeV	15.3 TeV	14.6 TeV

Excited electron

- e* can be directly discovered at CLIC, if kinematically allowed
- Even if unreachable, it would distort ee→γγ spectrum via the t-channel exchange

• LEP combined limit: $M_{e^*}>256GeV$ (assuming $M_{e^*}=\Lambda$)

Excited electron: Fit to $1/M_{e^*}^4 = 1/\Lambda^4$

σ(Lumi)	0.2%	0.5%	1%	10%
σ (stat) 10 ⁻⁴ TeV ⁻⁴	7.85	9.06	10.35	11.43
σ (syst) Bckg ±15%	0.29	0.33	1.70	5.34
σ (syst) θ ±1mrad	1.28	0.38	0.44	1.77
M _{e*} (95%CL)	5.03 TeV	4.87 TeV	4.70 TeV	4.47 TeV

BSM contributions to cos0 spectrum

Igor Boyko

Summary

- Estimated sensitivity for 4 BSM models, with old CLIC_SiD geometry:
 - QED cut-off 6-6.3 TeV (LEP 400 GeV)
 - Contact interaction 19-20 TeV (LEP 800 GeV)
 - Extra dimensions 15-16 TeV (LEP 1000 GeV)
 - Excited electron 4.7-4.9 TeV (LEP 250 GeV)
- With 2 ab⁻¹ results still not systematics-limited
- Luminosity precision: 1% much better than 10%, 0.5% better than 1%, 0.2% add very little