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If you have questions, please do not hesitate to contact me: andreas.hoecker@cern.ch



O Utl | ne (4 lectures)

1st lecture:

. Introduction
. Probability

2nd lecture:
. Probability axioms and hypothesis testing
. Parameter estimation
. Confidence levels (some catch up to do...)

3rd lecture:
. Maximum likelihood fits
. Monte Carlo methods
. Data unfolding

4t lecture:
. Multivariate techniques and machine learning



Monte Carlo techniques




Why “Monte Carlo” technigues 7

Monte Carlo (MC) techniques are computational algorithms that rely on repeated random

sampling to obtain numerical results

They are used when analytical solutions are too complex or not even known

Examples:

« Numerical integration of complex, multidimensional
integrals (eg phase-space integration of matrix
elements describing particle physics processes )

« Simulation of LHC particle collisions (“events”) as
measured by the particle detectors. This involves:

Matrix element generation of collision

Decay of produced particles and propagation of
stable particles through detector material

Electronic response of active detector layers, and
reconstructions of signals

Physics analysis

0.5

Numerical estimation of circle
area by taking ratio of red to
red-+blue points times the
square’s area

Figure from: https://en.wikipedia.org/wiki/Monte_Carlo_integration



Typical Monte Carlo Production Chain
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Why “Monte Carlo” technigues 7

Monte Carlo (MC) techniques are computational algorithms that rely on repeated random

sampling to obtain numerical results

They are used when analytical solutions are too complex or not even known

Examples:

« Numerical integration of complex, multidimensional
integrals (eg phase-space integration of matrix
elements describing particle physics processes )

« Simulation of LHC particle collisions (“events”) as
measured by the particle detectors. This involves:

Matrix element generation of collision

Decay of produced particles and propagation of
stable particles through detector material

Electronic response of active detector layers, and
reconstructions of signals

Physics analysis

« Simpler: error propagation and estimation of error on a
measured quantity with unknown property (— next slide)
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Numerical estimation of circle
area by taking ratio of red to
red-+blue points times the
square’s area

Figure from: https://en.wikipedia.org/wiki/Monte_Carlo_integration



Bootstrap methoad

Consider the following problem: a quantity x was measured N times: x; (i =1...N)

One wants to determined a derived quantity y(x4, ..., Xy), and needs an error for it.

— Error propagation (remember: o, =

dy

ECX)‘ ~_-0), butit requires to know the PDF of x

Assume the distribution of the measured x; l0oks like this:

Entries

RMS

1e408
-0.4997
1.116

=y

This is a PDF, and the best available information

One can obtain a new set to “simulate” the
measurements by applying resampling with
replacement

That is: one draws M events from the ensemble
allowing to re-draw the same event multiple times

One does this many times

— Bootstrapping



Bootstrap methoad

Consider the following problem: a quantity x was measured N times: x; (i =1...N)

One wants to determined a derived quantity y(x4, ..., Xy), and needs an error for it.

— Error propagation (remember: o, =

dy(x)| _
X Ix=x

Assume the distribution of the measured x; l0oks like this:
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1.116

Boostrapping doesn’t require
large data statistics, but the
accuracy of the PDF estimates
will be affected if too few events
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Bootstrap method — does it really work ?

Let’s try with our toy example: simulate 100,000 experiments with 1,000 events each
sampled from some analytic PDF (Nature’s unknown truth) that we want to approximate

Distribution of
mean values
among all
experiments

One example
experiment k
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Now, use this experiment
to sample 100000 bootstrap
experiments

Satisfying result:
RMS reproduced
within 1.7%
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Bootstrap method — does it really work ?

Let’s try with our toy example: simulate 100,000 experiments with 100 events each
sampled from some analytic PDF (Nature’s unknown truth) that we want to approximate
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Now, use this experiment
to sample 100000 bootstrap

experiments

See: http://projecteuclid.org/download/pdf_1/euclid.ss/1177013815
for more information on bootstrap method
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Mediocre result:
RMS reproduced
within 30%
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JaCkanfe I’esamphng methOd (also called: leave-one-out cross validation)

Old method (~1950), basically replaced by bootstrap. Nevertheless instructive to know

Let's again consider: a quantity x was measured N times: x; (i =1...N)
One wants to determine a derived quantity y = y(x4, ..., Xy), and needs an error for it:

« Study how y changes when leaving out one measurement at the time

let: y; = yi(x1, v Xi— 1, Xjgp1s - Xn),

and compute the bias-corrected jackknife estimator of y: y/*™ = Ny — (N — 1)y;

Jack

« Ploty;”" foralli =1..N and treat them as if they were independent samples of the

measured guantity.

»  Compute mean or variance from y)** ensemble
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Monte Carlo (MC) integration

Want to numerically compute an expectation value: E[y] = [ y(x)p,(x)dx

y(x) * Simplestsolution: n-equidistant
stepwise summation

Px(X)
 Works in 1, possibly few dimensions D
« Bad curse of dimensionality:
exponential growth of n with D
= > « Random MC phase-space sampling
/ X converges faster for large D

MC integration to compute E[y] requires MC sampling according to PDF p, (x)

1 ZN samples

That given, one finds: [ y(x)p,(x)dx =~ m o Do y(xg)

samples
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“Hit-or-miss” rejection sampling

Simplest way to generate random numbers (to “sample”) according to PDF p,.(x)

Pmax 1. Generate uniform random number
in interval [x4, x,] = x; and p,(x;)
Px(X)
2. Generate another uniform random
Py (x;) number in interval [0, prax] = Pi
3. If p; < p,(x;):accept x;; else: reject
- — >
X1 Xi X2

q,.(x) = pmax, the (here uniform) PDF of generated x values defines proposal distribution

— One could be smarter to have a larger “accept” rate (efficiency)
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Rejection sampling

One can choose a (known) proposal distribution g, (x) closer to p,(x)

Pmax 1. Generate random number according to
q.(x) ininterval [x4, x,] = x; and p,(x;)
Qx(xi) (.X,')
// \ 2. Generate another uniform random
Dy (X;) number in interval [0, g, (x;)] — p;
U 3. If p; < p,(x;):accept x;; else: reject
X1 Xi X2

Fraction of accepted events now larger than before (there are techniques to adapt
automatically the proposal distribution during the generation)

— Can be even more clever if only integration needed, no random event generation
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Markov chain Monte Carlo (MCMC) method

So far, the accuracy of the sampling depended on how closely g, (x) follows p,(x)

This is a problem for sparsely known p,.(x) in case of complex multi-D structure. Every
random point is chosen independently of every other one.

Markov chain: (eg, "random walk”)  Andrey Markov (1856-1922)

« (Consecutive random steps depend on previous ones in random variable space

» Allows to favor stepping into regions where p,(x) is large

Several Markov chain algorithms: Metropolis, Gibbs, ... — next pages

15



Metropolis sampling algorithm (1953

Autocorrelation sampling of PDF p,(x)

1. Start anywhere in (multidimensional) x space and sample this point: p; = p.(x1)
2. Provide proposal distribution q,(x2|x1) to move from x; — x,

* q.(x2|x4) could be Gaussian with appropriate metric in x space to cover full space

* Accept x5 if: p5 > p4 else: according to probability p,/p1

* If not accepted, set x, = x1 (no walk)

3. lterate step 2. for x3 vs. x5, etc. ;

Accepted moves
2.5+ Rejected moves

Sample points x will wander closer and closer to
the peak of the PDF, still jumping enough from

time to time to sample the whole space sl
(Algorithm requires sufficient iterations. Test by checking stability

of derived result, or by comparing several sampling ensembles
obtained with different start values)

0 015 1 1i5 2 215 3
This subfigure from PRML, Bishop (2006)
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Gibbs sampling algorithm (1984)

A method with no rejection:

1. Instead of moving along all dimensional
components (and reject low-probability moves),
the Gibbs sampler moves along 1 component
according to the PDF conditioned on all other
components.

2. Cycle through all components

Markov chain Monte Carlo usually converge fast
and, if metric well chosen, cover the full space

However: care needs to be taken as the sample

points x are correlated (with either sampling method,
although there exist tricks to reduce the correlations):

it depends on the application whether or not this
IS an issue

224

Accepted moves
2.5+ Rejected moves

0 05 1 15 2 25 3
This subfigure from PRML, Bishop (2006)
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Data unfolding

Unfolding toy example with TSVDUnfold

'+' . Unfolded data __
i1 True data

------- Measured data
------- True MC
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8 6 4 2 0 2 4 6 8
x variable

Figure from arXiv:1112.2226v1
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Data unfolding — introduction

“Unfolding” means correcting measured data for any effects related to the measurement
device. The unfolded data can be directly compared to theory or among experiments

Consider a measured histogram y4ata = {ydata _ ydatal 5 corresponding Monte Carlo
histogram yM¢ of the same process as the data that underwent full detector simulation, its
truth distribution (ie, before detector simulation) 2M¢ = {x}MC, ..., xMC}, and the mxn matrix AMC
obtained from MC that describes the "smearing” process due to the measurement:

MC , . MC _ ,,MC
A =y

X

Note that in general y4ata = yMC (the physics leading to y43% is what we want to measure),
but we assume AMC = 493ta (we know the detector response).

Hence, to obtain the truth information x93t one “just” needs to invert A:
ydata — (AMC)_1 . ydata

This is where the trouble begins ...
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Data unfolding — introduction

V. Kartvelishvili at https://indico.cern.ch/event/107747

The distribution y43t and the matrix AMC have finite statistics. An attempt to solve the
problem directly and “exactly” will end up looking like this:
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MC
The poor solution, bin-by-bin corrections, x13t = e -y only works if AMC is square and
i

~diagonal so that the ratio xM¢/yMC corrects for mainly efficiency effects, or if yiata = yMC

A better solution is to regularise the matrix inversion problem ...
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Data unfolding — regularisation

Regularisation damps the oscillations, by suppressing statistically insignificant bins in the
data distribution and response matrix.

In simplified form, one can write the unfolding problem as a minimisation of
XZ(xdata) — (AMC . ydata _ ydata)T(AMC . ydata _ ydata) +7- (deata)T(deata)

where C is a matrix and Cx92% js the sum of squares of the 29 derivative of xd4ata

Minimising x? wrt. the first term only corresponds to the (bad) exact inversion solution.
The second term regularises the inversion by damping the oscillations.

The parameter t regulates the strength of the damping:

 |f T too small — oscillations

« If T too large — information in x93t js suppressed
(x93t hecomes too “smooth” and will be biased towards xMC)

» The right choice captures the significant information and discards the rest
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Events

Data unfolding — example

TSVUnfold @ ROOT
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Over-regularised

<+

(Cx)? =0.0002 *+

Best regularisation choice

Unfolding toy example with TSVDUnfold Unfolding toy example with TSVDUnfold

sig _
Nbin =5

Unfolded data —

Unfolded data NSig = 13 + NSig — 39
True data bén True data bén
------- Measured data (Cx) = 0.003 ------- Measured data (CX) =0.078

True MC

True MC

Under-regularised

Unfolding toy example with TSVDUnfold

+ *  Unfolded data
True data

Measured data
True MC

X variable

X variable

The parameter t regulates the strength of the damping:

If T too small — oscillations

If T too large — information in x93t is suppressed
(x93t hecomes too “smooth” and will be biased towards xMC)

x variable

The right choice captures the significant information and discards the rest
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Folding versus unfolding

Unfolding is an ill-defined problem which necessarily leads to some obstruction of
information in the data and transfer of statistical uncertainty to a systematic one after
regularisation (this is similar to a non-parametric fit to data)

Technically simpler and mathematically well defined is the folding of a theoretical
prediction x€°(9), depending on a set of parameters 0, through the detector response
and direct comparison with the measured data. It allows the statistical test:

XZ(xtheO(Q)) — (AMC . xtheO(H) _ ydata)T(AMC . xtheO(Q) _ ydata)
Folding requires that the experiments either perform the test, or publish AM¢ and ydata

Folding does not allow a model-independent combination or comparison among
experiments. In most case, unfolding is the only viable solution for easy and long-term
use of the experimental results.
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Summary

for today

Bootstrapping methods allow to straightforwardly re-sample measured data for the
purpose of error propagation

Brief introduction to Monte Carlo integration and the sampling of random data
according to any arbitrary PDF

Markov-Chain Monte Carlo integration is a very effective method that “automatically”
samples the important regions (where the PDF is large) more often than tails. Try
yourself!

Unfolding is a delicate mathematical operation that requires careful regularisation.
Folding can help in some cases.

24



Multivariate technigues and machine learning
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Event classification

Suppose data sample with two types of events: Hy, Hq
» We have found discriminating input variables x1, x5, ...

« What decision boundary should we use to select events of type H;?

Rectangular cuts? Linear boundary? A nonlinear one?

Low variance (stable), high bias methods High variance, small bias methods
26



Parameter regression

How to estimate a functional behaviour from a set of measurements? HEP examples:
» Energy deposit in a the calorimeter, distance between overlapping photons, ...

» Entry location of a particle in the calorimeter or on a silicon pad, ...

Constant ? Linear function ? A non-linear one ?

f(x)

Looks trivial? What if we have many input variables?

Note: the goal is not to fit given data, but to learn f(x) vs. x to predict target f(x) for new measurements x
27



These are the simplest applications of statistical machine learning (ML).
Most particle physics utilisations so far fall into this category

However, there is no limit of use cases for complex machine learning...

Image recognition Table tennis (KUKA advertisement) Autonomous driving (Google)

+ speech recognition, language understanding, syntax parsing, translation, face recognition, road hazard detection, ...
and: PHYSICS !

...as long as the ML algorithms are smart and efficient enough, there is sufficient
computing power, and a complete set of training data

Also in particle physics we can apply ML to more complex problems. Among
these: track reconstruction, calibration, tuning
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Machine learning is giving computers the ability to learn without explicitly
programming them (arhur samuel, 1959)

It is fundamentally different from applying a set of fixed rules (a “program”) to
solve a problem

Chess computers in the 1980’s and 90’s Alpha Go in 2016

LEE SEDOL

Rule-based programming Machine learning

(Deep reinforcement learning)

00:01:00
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Not so long ago, real-life artificial intelligence used to be like this:

© 2014 Ted Goff
KDnuggets Cartoon

e -

“The machine learning algorithm
wants to know if we’d like a
dozen wireless mice to feed the
Python book we just bought.”

Such things still happen, but the improvements have nevertheless been astounding
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Picture from: https://redshift.autodesk.com/machine-learning/

More tomorrow. ..

\ _
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