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Introduction to probability and statistics (4) 

Andreas Hoecker (CERN)
CERN Summer Student Lecture, 17–21 July 2017

If you have questions, please do not hesitate to contact me: andreas.hoecker@cern.ch
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Outline (4 lectures)

1st lecture:
• Introduction 
• Probability

2nd lecture:
• Probability axioms and hypothesis testing
• Parameter estimation
• Confidence levels (some catch up to do…)

3rd lecture:
• Maximum likelihood fits
• Monte Carlo methods
• Data unfolding

4th lecture:
• Multivariate techniques and machine learning



Monte Carlo techniques

3



Why “Monte Carlo” techniques ?

Monte Carlo (MC) techniques are computational algorithms that rely on repeated random 
sampling to obtain numerical results

They are used when analytical solutions are too complex or not even known

Examples:
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• Numerical integration of complex, multidimensional 
integrals (eg phase-space integration of matrix 
elements describing particle physics processes )

• Simulation of LHC particle collisions (“events”) as 
measured by the particle detectors. This involves:

– Matrix element generation of collision
– Decay of produced particles and propagation of 

stable particles through detector material
– Electronic response of active detector layers, and 

reconstructions of signals
– Physics analysis

1

0.5

0

-0.5

-1
-1 -0.5 0 0.5 1

Numerical estimation of circle 
area by taking ratio of red to 
red+blue points times the 
square’s area

Fi
gu

re
 fr

om
: h

ttp
s:

//e
n.

w
ik

ip
ed

ia
.o

rg
/w

ik
i/M

on
te

_C
ar

lo
_i

nt
eg

ra
tio

n



5

Simulation

ATLAS Monte Carlo Production

R. Harrington 3 2nd LPCC Detector Simulation Workshop, CERN, 18-19 March 2014

Typical Monte Carlo Production Chain
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Why “Monte Carlo” techniques ?

Monte Carlo (MC) techniques are computational algorithms that rely on repeated random 
sampling to obtain numerical results

They are used when analytical solutions are too complex or not even known

Examples:
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• Numerical integration of complex, multidimensional 
integrals (eg phase-space integration of matrix 
elements describing particle physics processes )

• Simulation of LHC particle collisions (“events”) as 
measured by the particle detectors. This involves:

– Matrix element generation of collision
– Decay of produced particles and propagation of 

stable particles through detector material
– Electronic response of active detector layers, and 

reconstructions of signals
– Physics analysis

• Simpler: error propagation and estimation of error on a 
measured quantity with unknown property (® next slide)
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Bootstrap method

Consider the following problem: a quantity 𝒙 was measured 𝑵 times: 𝒙𝒊	 𝒊 = 𝟏…𝑵

One wants to determined a derived quantity 𝒚(𝒙𝟏,… , 𝒙𝑵), and needs an error for it.

® Error propagation (remember: 𝜎- =
.-(/)
./

0
/1/̅

3 𝜎/), but it requires to know the PDF of 𝒙
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Assume the distribution of the measured 𝒙𝒊 looks like this:

• This is a PDF, and the best available information

• One can obtain a new set to “simulate” the 
measurements by applying resampling with 
replacement

• That is: one draws 𝑴 events from the ensemble 
allowing to re-draw the same event multiple times

• One does this many times

→ Bootstrapping
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Assume the distribution of the measured 𝒙𝒊 looks like this:

Boostrapping doesn’t require 
large data statistics, but the 
accuracy of the PDF estimates 
will be affected if too few events

𝒙 𝒙



Bootstrap method — does it really work ?

Let’s try with our toy example: simulate 100,000 experiments with 1,000 events each 
sampled from some analytic PDF (Nature’s unknown truth) that we want to approximate
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Distribution of 
mean values 
among all 
experiments 

One example 
experiment 𝒌

Now, use this experiment
to sample 100000 bootstrap 
experiments

𝒙𝒌 𝒙

Satisfying result: 
RMS reproduced 
within 1.7%



Bootstrap method — does it really work ?

Let’s try with our toy example: simulate 100,000 experiments with  100 events each 
sampled from some analytic PDF (Nature’s unknown truth) that we want to approximate
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Distribution of 
mean values 
among all 
experiments 

One example 
experiment 𝒌

Now, use this experiment
to sample 100000 bootstrap 
experiments

𝒙𝒌 𝒙

Smaller 
statistics 
sample)

Mediocre result: 
RMS reproduced 
within 30%

See: http://projecteuclid.org/download/pdf_1/euclid.ss/1177013815 
for more information on bootstrap method



Jackknife resampling method (also called: leave-one-out cross validation)

Old method (~1950), basically replaced by bootstrap. Nevertheless instructive to know

Let’s again consider: a quantity 𝒙 was measured 𝑵 times: 𝒙𝒊	 𝒊 = 𝟏…𝑵

One wants to determine a derived quantity 𝒚 = 𝒚(𝒙𝟏,… , 𝒙𝑵), and needs an error for it:

• Study how 𝒚 changes when leaving out one measurement at the time

let:  𝑦7 = 𝑦7 𝑥9, … 𝑥7:9, 𝑥7;9, … 𝑥< ,

and compute the bias-corrected jackknife estimator of 𝑦:  𝑦7
=>?@ = 𝑁𝑦	 − 𝑁 − 1 𝑦7

• Plot 𝑦7
=>?@ for all 𝑖 = 1…𝑁 and treat them as if they were independent samples of the 

measured quantity. 

• Compute mean or variance from 𝑦7
=>?@ ensemble
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Monte Carlo (MC) integration

Want to numerically compute an expectation value: 𝑬 𝒚 = ∫ 𝒚(𝒙)𝒑𝒙(𝒙)𝒅𝒙		
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• Simplest solution: 𝑛-equidistant 
stepwise summation

• Works in 1, possibly few dimensions 𝐷

• Bad curse of dimensionality: 
exponential growth of 𝑛 with 𝐷

• Random MC phase-space sampling 
converges faster for large 𝐷

𝑦(𝑥)

𝑥

MC integration to compute 𝐸 𝑦 requires MC sampling according to PDF 𝑝/(𝑥)

That given, one finds: ∫ 𝒚 𝒙 𝒑𝒙 𝒙 𝒅𝒙 ≈ 𝟏
𝑵𝐬𝐚𝐦𝐩𝐥𝐞𝐬

∑ 𝒚(𝒙𝒊)
𝑵𝐬𝐚𝐦𝐩𝐥𝐞𝐬
𝒊1𝟏

𝑝/(𝑥)



“Hit-or-miss” rejection sampling

Simplest way to generate random numbers (to “sample”) according to PDF 𝑝/(𝑥)
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𝑦(𝑥)𝑝U>V

𝑥9 𝑥W𝑥7

𝑝/(𝑥7)

1. Generate uniform random number 
in interval [𝑥9, 𝑥W]® 𝒙𝒊 and 𝒑𝒙(𝒙𝒊)

2. Generate another uniform random 
number in interval [0, 𝑝U>V]® 𝒑𝒊

3. If 𝒑𝒊 < 𝒑𝒙 𝒙𝒊 : 𝐚𝐜𝐜𝐞𝐩𝐭	𝒙𝒊; 𝐞𝐥𝐬𝐞: 𝐫𝐞𝐣𝐞𝐜𝐭

𝒒𝒙 𝒙 = 𝑝U>V, the (here uniform) PDF of generated 𝒙 values defines proposal distribution

® One could be smarter to have a larger “accept” rate (efficiency)

𝑝/(𝑥)



Rejection sampling

One can choose a (known) proposal distribution 𝑞/(𝑥) closer to 𝑝/(𝑥)
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𝑦(𝑥)

𝑥9 𝑥W𝑥7

1. Generate random number according to 
𝑞/(𝑥) in interval [𝑥9, 𝑥W]® 𝒙𝒊 and 𝒑𝒙(𝒙𝒊)

2. Generate another uniform random 
number in interval [0, 𝑞/(𝒙𝒊)]® 𝒑𝒊

3. If 𝒑𝒊 < 𝒑𝒙 𝒙𝒊 : 𝐚𝐜𝐜𝐞𝐩𝐭	𝒙𝒊; 𝐞𝐥𝐬𝐞: 𝐫𝐞𝐣𝐞𝐜𝐭

Fraction of accepted events now larger than before (there are techniques to adapt 
automatically the proposal distribution during the generation)

® Can be even more clever if only integration needed, no random event generation

𝑝U>V

𝑝/(𝑥7)

𝑞/(𝒙𝒊) 𝑝/(𝑥)



Markov chain Monte Carlo (MCMC) method

So far, the accuracy of the sampling depended on how closely 𝒒𝒙(𝒙) follows 𝒑𝒙(𝒙)

This is a problem for sparsely known 𝒑𝒙(𝒙) in case of complex multi-D structure. Every 
random point is chosen independently of every other one. 

Markov chain: (eg, ”random walk”)

• Consecutive random steps depend on previous ones in random variable space

• Allows to favor stepping into regions where 𝒑𝒙(𝒙) is large

Several Markov chain algorithms: Metropolis, Gibbs, … ® next pages
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Andrey Markov (1856–1922)



Metropolis sampling algorithm (1953)

Autocorrelation sampling of PDF 𝒑𝒙(𝒙)

1. Start anywhere in (multidimensional) 𝒙 space and sample this point: 𝒑𝟏 = 𝒑𝒙(𝒙𝟏)

2. Provide proposal distribution 𝒒𝒙(𝒙𝟐|𝒙𝟏) to move from 𝒙𝟏 ® 𝒙𝟐
• 𝒒𝒙(𝒙𝟐|𝒙𝟏) could be Gaussian with appropriate metric in 𝒙 space to cover full space

• Accept 𝒙𝟐 if: 𝒑𝟐 > 𝒑𝟏 else: according to probability 𝒑𝟐/𝒑𝟏

• If not accepted, set 𝒙𝟐 = 𝒙𝟏 (no walk)

3. Iterate step 2. for 𝒙𝟑 vs. 𝒙𝟐, etc.
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Sample points 𝒙 will wander closer and closer to 
the peak of the PDF, still jumping  enough from 
time to time to sample the whole space                        
(Algorithm requires sufficient iterations. Test by checking stability 
of derived result, or by comparing several sampling ensembles 
obtained with different start values)

Accepted moves
Rejected moves



Gibbs sampling algorithm (1984)

A method with no rejection:

1. Instead of moving along all dimensional 
components (and reject low-probability moves), 
the Gibbs sampler moves along 1 component 
according to the PDF conditioned on all other 
components. 

2. Cycle through all components

17

Markov chain Monte Carlo usually converge fast 
and, if metric well chosen, cover the full space 

However: care needs to be taken as the sample 
points 𝒙 are correlated (with either sampling method, 
although there exist tricks to reduce the correlations):     
it depends on the application whether or not this 
is an issue

Accepted moves
Rejected moves



Data unfolding
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Data unfolding — introduction 

“Unfolding” means correcting measured data for any effects related to the measurement 
device. The unfolded data can be directly compared to theory or among experiments

Consider a measured histogram 𝒚i>j> = 𝑦9i>j>, … , 𝑦ki>j> , a corresponding Monte Carlo 
histogram 𝒚lm of the same process as the data that underwent full detector simulation, its 
truth distribution (ie, before detector simulation) 𝒙lm = 𝑥9lm,… , 𝑥nlm , and the 𝑚×𝑛 matrix 𝑨lm
obtained from MC that describes the ”smearing” process due to the measurement:
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𝑨lm 3 𝒙lm = 𝒚lm

Hence, to obtain the truth information 𝒙i>j>, one “just” needs to invert 𝑨:   

𝒙i>j> = 𝑨lm :9 3 𝒚i>j>

Note that in general 𝒚i>j> ≠ 𝒚lm (the physics leading to 𝒚i>j> is what we want to measure), 
but we assume 𝑨lm = 𝑨i>j> (we know the detector response).

This is where the trouble begins …



Data unfolding — introduction 

The distribution 𝒚i>j> and the matrix 𝑨lm have finite statistics. An attempt to solve the 
problem directly and “exactly” will end up looking like this: 
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V. Kartvelishvili at https://indico.cern.ch/event/107747

The problem

The problem is twofold:

✦ b is known with some precision

In many cases covariance matrix B = diag{b}
✦ Our knowledge of Â is not perfect either, due to finite MC statistics, as well as

imperfections in detector simulation. Even worse, Â is almost always very close to
being highly degenerate, so solving the system exactly does not make any sense.

An attempt to solve the problem directly and “exactly” will end up looking like this:
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𝒙𝐮𝐧𝐟𝑨lm

The poor solution, bin-by-bin corrections, 𝑥7i>j> =
/v
wx

-v
wx 3 𝑦7i>j>, only works if 𝑨lm is square and 

~diagonal so that the ratio 𝑥7lm/𝑦7lm corrects for mainly efficiency effects, or if 𝑦7i>j> ≅ 𝑦7lm.

Large bin-to-bin 
oscillations (“Gibbs 
phenomenon”) in 
unfolded spectrum

A better solution is to regularise the matrix inversion problem …



Data unfolding — regularisation

Regularisation damps the oscillations, by suppressing statistically insignificant bins in the 
data distribution and response matrix. 

In simplified form, one can write the unfolding problem as a minimisation of 
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𝜒W(𝒙i>j>) = 𝑨lm 3 𝒙i>j> − 𝒚i>j> | 𝑨lm 3 𝒙i>j> − 𝒚i>j> + 𝜏 3 𝐶𝒙i>j> | 𝐶𝒙i>j>

where 𝐶 is a matrix and 𝐶𝒙i>j> is the sum of squares of the 2nd derivative of 𝒙i>j>

Minimising 𝜒W wrt. the first term only corresponds to the (bad) exact inversion solution. 
The second term regularises the inversion by damping the oscillations.

The parameter 𝜏 regulates the strength of the damping:

• If 𝜏 too small ® oscillations

• If 𝜏 too large ® information in 𝒙i>j> is suppressed
(𝒙i>j> becomes too “smooth” and will be biased towards 𝒙lm)

• The right choice captures the significant information and discards the rest
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Data unfolding — example
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The parameter 𝜏 regulates the strength of the damping:

• If 𝜏 too small ® oscillations

• If 𝜏 too large ® information in 𝒙i>j> is suppressed
(𝒙i>j> becomes too “smooth” and will be biased towards 𝒙lm)

• The right choice captures the significant information and discards the rest



Folding versus unfolding

Unfolding is an ill-defined problem which necessarily leads to some obstruction of 
information in the data and transfer of statistical uncertainty to a systematic one after 
regularisation (this is similar to a non-parametric fit to data)

Technically simpler and mathematically well defined is the folding of a theoretical 
prediction 𝒙j���(𝜽), depending on a set of parameters 𝜽, through the detector response 
and direct comparison with the measured data. It allows the statistical test:
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𝜒W(𝒙j���(𝜃)) = 𝑨lm 3 𝒙j���(𝜃) − 𝒚i>j> | 𝑨lm 3 𝒙j���(𝜃) − 𝒚i>j>

Folding requires that the experiments either perform the test, or publish 𝑨lm and 𝒚i>j>

Folding does not allow a model-independent combination or comparison among 
experiments. In most case, unfolding is the only viable solution for easy and long-term 
use of the experimental results. 
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Summary 
for today

Bootstrapping methods allow to straightforwardly re-sample measured data for the 
purpose of error propagation

Brief introduction to Monte Carlo integration and the sampling of random data 
according to any arbitrary PDF

Markov-Chain Monte Carlo integration is a very effective method that “automatically” 
samples the important regions (where the PDF is large) more often than tails. Try 
yourself!

Unfolding is a delicate mathematical operation that requires careful regularisation. 
Folding can help in some cases. 



Multivariate techniques and machine learning
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Event classification

Suppose data sample with two types of events: 𝑯𝟎, 𝑯𝟏

• We have found discriminating input variables 𝒙𝟏, 𝒙𝟐, …  

• What decision boundary should we use to select events of type 𝑯𝟏?

26

Linear boundary? A nonlinear one?Rectangular cuts?

𝑯𝟏

𝑯𝟎

𝒙𝟏

𝒙𝟐 𝑯𝟏

𝑯𝟎

𝒙𝟏

𝒙𝟐 𝑯𝟏

𝑯𝟎

𝒙𝟏

𝒙𝟐

Low variance (stable), high bias methods High variance, small bias methods



Parameter regression

How to estimate a functional behaviour from a set of measurements? HEP examples:

• Energy deposit in a the calorimeter, distance between overlapping photons, …

• Entry location of a particle in the calorimeter or on a silicon pad, …

27

𝒙 𝒙

𝒇(𝒙)

𝒙

𝒇(𝒙)

Linear function ? A non-linear one ?Constant ?

Looks trivial? What if we have many input variables?
Note: the goal is not to fit given data, but to learn 𝒇(𝒙) vs. 𝒙 to predict target 𝒇(𝒙) for new measurements 𝒙

𝒇(𝒙)
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These are the simplest applications of statistical machine learning (ML).                   
Most particle physics utilisations so far fall into this category 

However, there is no limit of use cases for complex machine learning…

…as long as the ML algorithms are smart and efficient enough, there is sufficient 
computing power, and a complete set of training data

Also in particle physics we can apply ML to more complex problems. Among 
these: track reconstruction, calibration, tuning

Table tennis (KUKA advertisement) Autonomous driving (Google)Image recognition

+ speech recognition, language understanding, syntax parsing, translation, face recognition, road hazard detection, …
and: PHYSICS ! 
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Machine learning is giving computers the ability to learn without explicitly 
programming them (Arthur Samuel, 1959) 

It is fundamentally different from applying a set of fixed rules (a “program”) to 
solve a problem

Chess computers in the 1980’s and 90’s Alpha Go in 2016

Rule-based programming Machine learning
(Deep reinforcement learning)
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Not so long ago, real-life artificial intelligence used to be like this:

Such things still happen, but the improvements have nevertheless been astounding



More tomorrow…

31Picture from: https://redshift.autodesk.com/machine-learning/


