First LHC Transverse Beam Size Measurements with the Beam Gas Vertex Detector

A. Alexopoulos on behalf of the BGV team

The BGV team

A. Alexopoulos, C. Barschel, E. Bravin, G. Bregliozzi, N. Chritin, B. Dehning, M. Ferro-Luzzi, M. Giovannozzi, R. Jacobsson, L. K. Jensen, O. Rhodri Jones, V. Kain, R. Matev, M. Rihl, V. Salustino Guimaraes, R. Veness, S. Vlachos, B. Würkner

...and significant support by LHCb collaboration & BE-BI-BL section

Outline

- The BGV Demonstrator
 - Detector Design
 - Readout System
- BGV Data Analysis
 - Analysis Method
 - Results from 2016 LHC Run
- Summary

The BGV Demonstrator

- Non-destructive beam size measurement
 - Based on the reconstruction of beam-gas interaction vertices
 - Independent of accelerator luminosity or energy
 - Initial target to estimate bunch-by-bunch beam shape with a resolution of about 10% in 5 minutes

The BGV Demonstrator

- Detector fully installed in LHC Pnt.4 on the Beam 2 ring
- Main parts: Gas target volume, tracking detector & hardware trigger

The BGV Demonstrator

Detector Design Gas Target Optimized shape to provide • Pressure bump up to 10⁻⁷ mbar sharp decrease outside of the instead of 10⁻¹⁰ mbar **BGV** vacuum chamber % of lenght Ne Increase of the trigger rate Reduced beam pipe Reduced thickness & dens diameter of the exit window to minimize multiple scattering IPAC17 - First LHC Transverse Beam Profile Measurements with the BGV Detector

Detector Design

- Tracking Detector
 - Consists of 2 stations ('near' and 'far')
 - Four scintillating fiber (SciFi) modules per station
 - Each pair of modules is perpendicularly placed
 - Each module has two mats, also rotated by 2° with respect to each other to facilitate pattern recognition
 - Module read out by 16 Silicon Photo Multipliers (SiPMs) of 128 channels each

Detector Design

Tracking Detector

- Fibers of 250µm diameter, 4 or 5 fiber layers per mat
- Photons are generated in the fibers & detected by several pixels of the SiPM
- The signal of each channel is the sum of all fired pixels within the channel
- The crossing point is calculated as a weighted mean of the cluster's channels

mean position

amplitude

Detector Design Tracking Detector Tracks are reconstructed provided that a valid cluster is detected on each layer IPAC17 - First LHC Transverse Beam Profile Measurements with the BGV Detector

Detector Design

- Hardware Trigger
 - Based on scintillator plates
 - Three stations, 'veto', 'signal', 'confirm'
 - 'confirm' station to be commissioned during LHC 2017 run
 - Read out through Photomultiplier Tubes (PMT)
 - Coincidence of all signals is used as trigger

Readout System

Outline

- The BGV Demonstrator
 - Detector Design
 - Readout System
- BGV Data Analysis
 - Analysis Method
 - Results from 2016 LHC Run
- Summary

Analysis Method

- Impact parameter d_{xy} Distance of closest approach
 - Distance of closest approach of reconstructed tracks to the z-axis
- ullet Azimuthal angle ϕ
 - Angle between the x-y projection of the track & the x-axis

Use tracks & impact parameter correlations to measure beam position and size

Analysis Method

Beam Position

 Using the impact parameter to azimuthal angle correlation, the position can be calculated as:

$$d_{xy} = x_0 \sin(\phi) - y_0 \cos(\phi)$$

Analysis Method

Beam Size

 Using the impact parameter correlation of tracks produced by a beam-gas interaction the beam size is measured as:

$$\langle d_{xy}^{(1)} d_{xy}^{(2)} \rangle = \sigma_{beam}^2 \cos(\phi_1 - \phi_2)$$

• Assuming that $\sigma_x = \sigma_y$ at BGV location (optics)

LHC 2016 Run Results

- Results from fill 5570
 - Beam properties
 - Energy : 6.5 TeV
 - Intensity: (B2) 1.8 x 10¹³ / 684p
 - Gas Pressure: 6.0 x 10⁻⁸ mbar
 - SiPMs Temperature: -25°C
 - Acquisition duration of ~5 minutes
 - Trigger rate <1kHz

LHC FILL NUMBER: 5570 STABLE BEAMS SINCE 05h 23m	Beam	Intensity	Stored E	Particle	Bunches	Beam Energy	00 10 0010
PROTON-NUCLEUS PHYSICS	1	4.14E+12	4.31 M I	Pb82	540	6.50 Z TeV	03-12-2016 13:28:51
Inj. scheme: 100_200ns_540Pb_684p_513_224_162_20inj	2	1.80E+13	4.31 MJ F	Proton	684		
2016-12-03 08:22:20 (now: physics 540Pb/684p)					W.045		

LHC 2016 Run Results

Data corrections

- Pedestal subtraction
- Common mode noise suppression
- Channel correlation

Data Metrics

- Track Multiplicity
- POCA z-distribution
- Pseudorapidity

LHC 2016 Run Results

Beam position

$$(x,y) = (-0.79mm, 0.29mm)$$

Beam Size

$$\sigma_{beam} = 0.37mm \pm 0.13mm$$

Summary & Outlook

- First commissioning steps were successfully completed
- Transverse beam profile measured with 0.13mm statistical error
 - Not yet allowing for a full comparison with other instruments
- Several enhancements:
 - Zero-suppression in the read-out FPGAs

 Increase statistics (100x)
 - Trigger upgrade Improve the event selection
 - Cross-calibration with other LHC instruments