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Nucleosynthesis
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@ Phase transitions at high temperature
[*]
@ Inflation

Ruth Durrer (Université de Genéve) Cosmology Il July 27,2017

3/22



The thermal history of the Universe

In the past the Universe was not only much denser than today but also much hotter.

Important events in the early
Universe

k Energy

Atterglow Light s @ Recombination

Pattern  Dark Ages Development of
400000yrs. Galaxies, Planets, etc.

1st St

tars
about 400 million yrs.

Big Bang Expansion
13.7 billion years

Age of the Universe: f, ~ 13.7 milliards d’années
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Nucleosynthesis

At The ~ 0.08MeV ~ 10%K,
Zwe ~ 4 x 10%, Deuterium
(p + n) becomes stable. At
this moment virtually all the
neutrons present in the Uni-
verse are ‘burned’ into He®.
Only traces of Deuterium,
Helium® and Lithium’ remain.
Their abundance depends
strongly on the baryon den-
sity.
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Neutrino decoupling

@ At Ty ~ 1.4MeV ~ 1.6 x 10'°K, z4. ~ 6 x 10°, weak interactions are no longer
sufficiently frequent to keep the neutrinos in thermal equilibrium with the rest of the
matter (baryons, electrons, photons, dark matter) neutrinos decouple.
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matter (baryons, electrons, photons, dark matter) neutrinos decouple.

@ Subsequently they interact only gravitationally. They are neither generated nor
destroyed but simply loose energy due to the expansion of the Universe (redshift).

@ Later, at T ~ 0.5MeV, electrons and positrons decay into photons and heat up the
photons but not the decoupled neutrinos.

@ A neutrino background at a ‘temperature’ T, = (%)1/3 To ~ 1.9K should exist in
the Universe.

@ But even if these neutrinos have a density of about 300 particles per cm® they
have not been detected directly so far due to their extremely weak interaction.
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Abundance of relativistic particles

Neutrinos are however 'observed’ indirectly by their gravitational effects:
@ They contribute to the expansion of the Universe (Friedmann eqn) which is
relevant for the abundance of Helium-4. = N, (number of relativistic
neutrino species at T ~ 0.1MeV).

Tiyp” 106 min

: (Sarkar et al. ’06)
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Neutrinos are however 'observed’ indirectly by their gravitational effects:

@ They contribute to the expansion of the Universe (Friedmann eqgn) which is
relevant for the abundance of Helium-4. = N, (number of relativistic
neutrino species at T ~ 0.1MeV).

Tiyp” 106 min

: (Sarkar et al. ’06)

- =35

@ This limit applies to any species of relativistic particles with thermal abundance at
T ~ 0.1MeV.
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Neutrinos in the CMB

Neutrinos also contribute to the anisotropies of the CMB where one can even mesure
the consequence of the fact that neutrinos are not a perfect fluid but collisionless
particles.
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Neutrinos in the CMB

The CMB cannot be fit with neutrino’s which are either a perfect fluid or a fluid with
anisotropic stress.

T T T T T
20F ° .
15 | .
X 10f . (Sellentin & Durrer, 2015)
5L ]
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The probability that the fluid model is described by this data is

exp(—Ax?/2) ~ 3.7 x 107°

times smaller than the probability that the data is described by free streaming
neutrinos.
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Neutrino mass

Oscillation experiments request (see course by Pilar Hernandez):

>, my,, > 0.057eV. Oscillation experiments measure mass differences; cosmological
observations are mainly sensitive to the sum neutrino masses.

Massive neutrinos contribute to the dark matter density,

>, m,
94eV.

As they are very light, the cannot form small scale structure: Observations of small
scale structure limit neutrinos masses.
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Neutrino number, sterile neutrinos

The number of relativistic degrees of freedom, N, which decouple before et

annihilation is defined by
7 (4\*°
Neffg (ﬁ) +1

In the standard model N.i = 3.046. The Planck + BAO data requires

Prel = P~

Nz = 3.04£0.33  (68%)

Even with the Planck data alone, AN > 1 is excluded at more than 4¢.

An additional sterile neutrino with AN, ~ 0.3 and mass 0.5 eV < Mygeiite <5 €V can
actually reduce the tension of Planck with lensing data (which has a lower os).

A much heavier, ~ keV, sterile neutrino could be warm dark matter.
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Phase Transitions: confinement, electroweak transition

During the expansion and cooling of the Universe, its temperature has changed by
many orders of magnitude.

@ The QCD transition: at T, ~ 100MeV ~ 10'%K, z, ~ 4 x 10'" :
quarks and gluons are confined into hadrons. Protons and neutrons are formed.
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During the expansion and cooling of the Universe, its temperature has changed by

many orders of magnitude.

@ The QCD transition: at T, ~ 100MeV ~ 10'%K, z, ~ 4 x 10'" :
quarks and gluons are confined into hadrons. Protons and neutrons are formed.
@ The electroweak transition: at T, ~ 100GeV ~ 109K, z; ~ 4 x 10"*:

The W* and Z bosons become massive, only the photon remains massless =
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(Caprini, Durrer & Servant, 2009)
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The satellite LISA

The LISA pathfinder satellite (the
The LISA satellite projet (artist’s im- real thing) successfully launched in
pression). Launch >2020. December 2015.
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Baryon asymmetry

@ The solar system consists nearly exclusively of baryons (‘'normal’ matter, protons
and neutrons), it contains only very little anti-matter.
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@ The same is true for the Milky Way and the entire observable Universe.
@ |s this baryon asymmetry an initial condition?
@ If not, how can we explain it?

To generate a baryon asymmetry during the evolution of the Universe the three so
called Sakharov criteria have to be satisfied:

@ Violation of baryon number conservation (standard model v).

@ Violation of both, C (charge conjugation) and CP (P= parity) symmetry and
therefore also T (time reversal) symmetry (standard model v).

@ The cosmic plasma must drop out thermal equilibrium (standard model 7).

With small variations of the standard model particle physics can obtain a 1st order
electroweak phase transition which would lead to out of equilibrium processes and
allow the generation of a baryon asymmetry.
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@ Singularity ?
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@ Singularity ?
@ Why is the Universe so big and so flat?
@ Whyisitsoold ? (fp ~ 1.4 x 10"years ~ 4.4 x 10""sec, tp ~ 5.4 x 10~ *sec)
@ Why has it such a high entropy ? (entropy/baryon ~ 10'°)
An inflationary phase addresses these questions: During inflation, the energy density

is dominated by the potential energy of a scalar field which is nearly constant.
The Friedmann equation then becomes

. 2
H? = (g) ? V ~ constant, R = HR.
With solution R(t) ~ Ry exp(Ht).

This rapid expansion renders the Universe large and flat.
The inflationary phase ends when the potential decays and leads to the production of a
lot of particles and hence a lot of entropy.

But an inflationary phase has also other consequences...
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Fluctuations from inflation

In quantum field theory each particle species (electron, photon, neutrino, etc)
corresponds to a field. This field fluctuates and particles are simply excitations of their
field (like the sounds of a guitar which correspond to the excitations of its strings).
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In quantum field theory each particle species (electron, photon, neutrino, etc)
corresponds to a field. This field fluctuates and particles are simply excitations of their
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This leads to real fluctuations in the energy density and, via Einstein’s equations, in the
geometry of the Universe.

These fluctuations which can be computed in detail, are the initial fluctuations for the
structures observed in the Universe, galaxies, clusters of galaxies, filaments, voids and
the anisotropies in the CMB.

The large scale structure of the Universe has been initiated by quantum fluctuations.
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Fluctuations from inflation in the CMB

Simple models of inflation predict not only scalar fluctuations (fluctuations of the
density) which lead to the formation of large scale structures, but also gravitational
waves.

Like scalar fluctuations, gravitational waves generate anisotropies in the CMB. In
addition, they generate a slight polarisation of the CMB photons.

Density perturbations (scalars) generate only one type of polarisation (E) while
gravitational waves (tensor perturbations) generate also a second type (B).
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Polarisation of the CMB

pure E-polarisation (scalars and grav. waves)

pure B-polarisation (only grav. waves)

the energy scale of inflation.

The discovery of B-polarisation is considered the ’holy grail’ of inflation. It determines
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B-polarisation in the CMB from tensors & lensing

lensed E

lensed B

Challinor & Lewis (2006)

tensor B
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Experimental limits
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(Bicep-Keck-Planck, 2015)
Limits on the tensor to scalar ratio r = Ar/As from observations.
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The significance of detecting tensor fluctuations

@ The amplitude of gravitational waves from inflation is proportional to the Hubble
scale and hence energy density during inflation.
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scale and hence energy density during inflation.
@ The amplitude of tensor fluctuations determines the energy scale of inflation:
r=Ar/As, As=22x10"°  Ar=4H/(x*M}).

E.=V!Y*=(r/0.1)"/*1.8 x 10"°GeV.

@ This is 12 orders of magnitude higher than the energy reached at LHC!

@ A primordial tensor signal in the CMB polarisation would be a signal from this
energy scale.

@ And we would see a quantum effect of the gravitational field,
= a’glimpse’ of quantum gravity.
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Conclusions

Cosmological observations contain unique information about the physics at very high
energies, beyond the standard model.

Ruth Durrer (Université de Genéve) Cosmology Il July 27, 2017 22/22



Conclusions

Cosmological observations contain unique information about the physics at very high
energies, beyond the standard model.

@ Limits for the neutrino masses and their number of families.

Ruth Durrer (Université de Genéve) Cosmology Il July 27, 2017 22/22



Conclusions

Cosmological observations contain unique information about the physics at very high
energies, beyond the standard model.

@ Limits for the neutrino masses and their number of families.
@ QCD and electroweak phase transitions.

Ruth Durrer (Université de Genéve) Cosmology Il July 27, 2017 22/22



Conclusions

Cosmological observations contain unique information about the physics at very high
energies, beyond the standard model.

@ Limits for the neutrino masses and their number of families.
@ QCD and electroweak phase transitions.
@ Baryon asymmetry

Ruth Durrer (Université de Genéve) Cosmology Il July 27, 2017 22/22



Conclusions

Cosmological observations contain unique information about the physics at very high
energies, beyond the standard model.

@ Limits for the neutrino masses and their number of families.

@ QCD and electroweak phase transitions.

@ Baryon asymmetry

@ Inflation: what particle does the scalar field of inflation correspond to?

Ruth Durrer (Université de Genéve) Cosmology Il July 27, 2017 22/22



Conclusions

Cosmological observations contain unique information about the physics at very high
energies, beyond the standard model.

@ Limits for the neutrino masses and their number of families.

@ QCD and electroweak phase transitions.

@ Baryon asymmetry

@ Inflation: what particle does the scalar field of inflation correspond to?

@ What is the energy scale of inflation and what can we learn about the physics at
this scale?

Ruth Durrer (Université de Genéve) Cosmology Il July 27, 2017 22/22



Conclusions

Cosmological observations contain unique information about the physics at very high
energies, beyond the standard model.

@ Limits for the neutrino masses and their number of families.

@ QCD and electroweak phase transitions.

@ Baryon asymmetry

@ Inflation: what particle does the scalar field of inflation correspond to?

@ What is the energy scale of inflation and what can we learn about the physics at
this scale?

@ Are there consequences of superstring theory for cosmology?

Ruth Durrer (Université de Genéve) Cosmology Il July 27, 2017 22/22



Conclusions

Cosmological observations contain unique information about the physics at very high
energies, beyond the standard model.

@ Limits for the neutrino masses and their number of families.

@ QCD and electroweak phase transitions.

@ Baryon asymmetry

@ Inflation: what particle does the scalar field of inflation correspond to?

@ What is the energy scale of inflation and what can we learn about the physics at
this scale?

@ Are there consequences of superstring theory for cosmology?
@ Can we observe effects of quantum gravity in the CMB?

Ruth Durrer (Université de Genéve) Cosmology Il July 27, 2017 22/22



Conclusions

Cosmological observations contain unique information about the physics at very high
energies, beyond the standard model.

@ Limits for the neutrino masses and their number of families.

@ QCD and electroweak phase transitions.

@ Baryon asymmetry

@ Inflation: what particle does the scalar field of inflation correspond to?

@ What is the energy scale of inflation and what can we learn about the physics at
this scale?

@ Are there consequences of superstring theory for cosmology?
@ Can we observe effects of quantum gravity in the CMB?

Cosmology seems to be one of the most promising directions to give us access to the
physics at very high energies, E > 10TeV.
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