

Development of a track-based algorithm for MET TST systematic uncertainties

Supervisor : Farida Fassi, Rachid Mazini, Rajaa Cherkaoui El Moursli

Present by: Souad Batlamous

Mohammed V University in Rabat

Outline

- Overview on Missing Energy Transvers (MET)
- MET Track-Soft-Term
- Framework for track-based systematic uncertainties
- Systematic uncertainties on tracking
- Setup for track-based algorithm
- TST Track Selection
- Control plots
- Conclusion

Overview

 Missing Energy Transvers (MET) is essential for many physics studies at the LHC:

Model Standard :

W boson, Z boson and top quark decay.

Higgs H → WW and H->TauTau

Beyond the Standard Model :

Supersymmetry with R-Party conservation

Extra dimensional models: Kaluza-Klein graviton/photon

Missing Transverse Energy at LHC:

Energy imbalance measure in the transverse plane due to:

- Undetectable Particle (neutrinos)
- weakly-interacting (SUSY) Particle
- Susceptible to object mismeasurement/miscalibration

MET in ATLAS

Missing Transverse Energy based in 2D :

$$E_{x(y)}^{\text{miss}} = -\left(E_{x(y)}^{\text{jets}} + E_{x(y)}^{e} + E_{x(y)}^{\gamma} + E_{x(y)}^{\tau} + E_{x(y)}^{\tau} + E_{x(y)}^{\mu} + E_{x(y)}^{\text{Soft Term}}\right)$$

- **MET** reconstruction:
- transverse vector sum of all objects :
 - → Fully reconstruction par:

Muons, Electrons, Jets, Taus, photon Hard Term

transverse vector sum of cluster or tracks:

Signals not used in reconstructed physics objects and are:

- CST Calorimeter-based: Calorimeter Soft Term (CST)
 - Reconstructed in the Calorimeter cells
- TST track-based:
 - ◆ Track Soft Term (TST) → Reconstructed in the ID

High P_T Particle escaping detection

This talk will focus on TST

Framework for track-based systematic uncertainties

Systematic uncertainties on tracking: Efficiency

$$Sys_{\textit{ExtraMaterial}}(p_T, \eta) = \frac{\epsilon_{trk}^{\textit{default}}(p_T, \eta)}{\epsilon_{trk}^{\textit{ExtraMaterial}}(p_T, \eta)} - 1$$

- Main source of systematic uncertainty on the tracking efficiency is the material in the Inner Detector ->
 Considered Sys_{ExtraMaterial}:
 - 1. 5% extra material overall → November and March results are compatible!
 - 2. 50% extra material PPO → wrong geo tag in the pre-MC15c sample → reco is being re-processed
 - 3. 30% extra material IBL → wrong geo tag in the pre-MC15c sample → reco is being re-processed
- NEW source of systematic uncertainty being considered for updated recommendations:
 - 4. FTF-BIC physics list as an alternative to the

baseline FTFP-BERT:
impact on tracking
in not negligible at
very low p_T and
high η, some extra
cneck is needed

Systematic uncertainties on tracking: Vertexing

- Differences between data & MC are considered as the uncertainties
- σ(data) > σ(MC):need to
 smear the IP resolutions
 in MC
- In Det Track Smearing Tool
 - Smear the IP in MC
 by: √σ(data)² σ(MC)²
 - Fit the resolutions by : $\sigma(d_0)_{\text{fixed }\theta} = \sqrt{E^2 + \frac{G^2}{p_{\text{T}}} + \frac{N^2}{p_{\text{T}}^2}}$.

the uncertainties for higher pT are calculated with the fit functions

 Usage: m_trackSmearingTool->correctedCopy(*track, newTrack) (see the <u>InDetTrackSystematicsAlgs twiki</u>)

Setup for track-based algorithm

Framework: AthenaAnalysisBase 2.4. 29

MC dataset: DAOD_JET3M

Event selection:

Events with $Z \rightarrow \mu\mu$ and 0-jets (pT>20GeV) are considered in this study for better estimation of tracking effects

Used all tracks with pT > 400MeV

Packages and classes that have been using are:

METUtilities package

> met::METMaker

> met::METRebuilder

Track Tools

Sysetematic variation

Track Selection Tool

TST Track Selection

- \rightarrow To check the TST variable the Z \rightarrow muonmuon process has been used
- To reconstruct the TST value, the tracks are required to have:
- Track pT > 400 MeV
- Track |η| < 2.5
- Either $(N(Si) \ge 7 \text{ and } N(\text{shared } Si) = 0) \text{ OR } N(Si) \ge 10$
- N(shared module) ≤ 1
- N(pixel hole) = 0
- N(SCT hole) ≤ 2
- |d0| < 2 mm
- |z0sin(theta)| < 3 mm

MET in $Z \rightarrow \mu\mu$ +0jet

 The MET of an event is calculated as the sum of a number of components the x and y axis :

$$E_{x(y)}^{\text{miss}} = -\left(E_{x(y)}^{\text{jets}} + E_{x(y)}^{e} + E_{x(y)}^{\gamma} + E_{x(y)}^{\tau} + E_{x(y)}^{\tau} + E_{x(y)}^{\mu} + E_{x(y)}^{\text{Soft Term}}\right)$$

systematic uncertainties: d0 bias + MET Track Selection

systematic uncertainties: Q0verP bias + MET Track Selection

systematic uncertainties: Z0sintheta bias+ MET Track Selection

systematic uncertainties: Global efficiency+ MET Track Selection

systematic uncertainties: PHYModel efficiency+ MET Track Selection

Conclusions

- MET is an important tool for many physics searches
- Track Soft Term is a critical ingredient in the MET calculation
- The current MET TST systematic uncertainties impact the value of the MET for several analyses.
- A new development of a track-based algorithm for MET TST systematic uncertainties is ongoing
- the plan is to move to Rel. 21 from now on in order to use this method for 2017 data.