

LABORATOIRE DE PHYSIQUE DES HAUTES ENERGIES ET ASTROPHYSIQUE

Some Insight into 2HDM with vector-like quarks at LHC

Mohammed MOUHCINE

Université Cadi Ayyad Journée ATLAS/MAROC 24 Avril 2017

Plan

2HDM+VLQs

- 2HDM : Brief description
- Vector-like quarks : VLQs

8 Résultats préliminaires

Plan

2HDM+VLQs

• 2HDM : Brief description

Vector-like quarks : VLQs

3 Résultats préliminaires

Introduction

Le Modèle Standard est une théorie effective d'une théorie plus complète qui demeure inconnue.

- ◊ Un boson de Higgs a été découvert en 2012 à 125 GeV, Mais...Est-ce le seul ? ⇒ New Physics
- Le secteur de Higgs reste encore inconnu (un seul doublet de Higgs) ! !
- Les problèmes :Gravitation, Nombres de famille de fermions,Hiérarchie de masses ...

Introduction

Le Modèle Standard est une théorie effective d'une théorie plus complète qui demeure inconnue.

- ◊ Un boson de Higgs a été découvert en 2012 à 125 GeV, Mais...Est-ce le seul ? ⇒ New Physics
- Le secteur de Higgs reste encore inconnu (un seul doublet de Higgs) ! !
- Les problèmes :Gravitation, Nombres de famille de fermions,Hiérarchie de masses ...
- \Longrightarrow le Modèle de Deux Doublets de Higgs : 2HDM(introduction d'un nouveau doublet Higgs)
 - Il est une extension minimale du secteur des Higgs.

Motivations

- Il satisfait aux contraintes expérimentales, il donne une riche phénoménologie avec l'ajout de bosons scalaires supplémentaires.
- La nouvelle physique nécessite des secteurs étendus de Higgs.

Motivations

- Il satisfait aux contraintes expérimentales, il donne une riche phénoménologie avec l'ajout de bosons scalaires supplémentaires.
- La nouvelle physique nécessite des secteurs étendus de Higgs.

L'enquête sur une physique au-delà du MSM (nouvelle physique)⇒des nouvelles particules non prévus par le MS pourraient devenir détectables.

- Les vecteurs quarks (vector-Like quarks VLQ) apparaissent dans de nombreuses extensions du SM
- ils ont récemment fait l'objet d'un large intérêt.
- L'apparition des FCNC.
- Des nouvelles sources de violation de CP.
- Ils ont récemment fait l'objet d'un large intérêt : motivé par les recherches directes du LHC (pair/single production).

Plan

2HDM+VLQs 2HDM : Brief description

- ZIIDWI : Brief description
- Vector-like quarks : VLQs

3 Résultats préliminaires

2HDM : Brief description

Le Modèle Standard à Deux Doublets de Higgs(THDM) Toute extension du MS doit se faire en préservant les deux contraintes :

7/26

Ø Absence de courant neutre changeant la saveur FCNC

2HDM : Brief description

Le Modèle Standard à Deux Doublets de Higgs(THDM) Toute extension du MS doit se faire en préservant les deux contraintes :

$$\bullet \quad \rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_w} \approx 1$$

Absence de courant neutre changeant la saveur FCNC Dans Le THDM, nous introduisons un nouveau doublet Higgs :

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix} = \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix} = \begin{pmatrix} \phi_5 + i\phi_6 \\ \phi_7 + i\phi_8 \end{pmatrix}$$

$$Y_1 = Y_2 = +1 , T_1 = T_2 = \frac{1}{2} .$$

Le Lagrangien du THDM

• Le Lagrangien du THDM invariant par rapport $SU_L(2) \times U_Y(1)$:

 $\mathcal{L}_{\textit{THDM}} = \mathcal{L}_{\textit{Higgs}} + \mathcal{L}_{\textit{g.k}} + \mathcal{L}_{\textit{Yukawa}}$

Le Lagrangien du THDM

• Le Lagrangien du THDM invariant par rapport $SU_L(2) \times U_Y(1)$:

$$\mathcal{L}_{\textit{THDM}} = \mathcal{L}_{\textit{Higgs}} + \mathcal{L}_{\textit{g.k}} + \mathcal{L}_{\textit{Yukawa}}$$

• la forme la plus générale du potentiel THDM : $V_{THDM} = \mu_{11}^2 \Phi_1^{\dagger} \Phi_1 + \mu_{22}^2 \Phi_2^{\dagger} \Phi_2 - (\mu_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c) + \frac{\Lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\Lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \Lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \Lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \{\Lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\Lambda_6 (\Phi_1^{\dagger} \Phi_1)^2 + \Lambda_7 (\Phi_2^{\dagger} \Phi_2)^2] (\Phi_1^{\dagger} \Phi_2) + h.c\}$

où μ_{11},μ_{22} , et $\Lambda_{1,2,3,4} \in \mathbb{R}$ (l'herméticité du potentiel), et μ_{12} et $\Lambda_{5,6,7}$ peuvent être complexes.

 $\Rightarrow \Lambda_{6,7} = 0$ si on impose que le potentiel soit invariant sous la symétrie discrète Z_2 ($\Phi_1 \rightarrow \Phi_1 \text{ et}(\Phi_2 \rightarrow -\Phi_2)$)

Le Lagrangien du THDM

• Le Lagrangien du THDM invariant par rapport $SU_L(2) \times U_Y(1)$:

$$\mathcal{L}_{\textit{THDM}} = \mathcal{L}_{\textit{Higgs}} + \mathcal{L}_{\textit{g.k}} + \mathcal{L}_{\textit{Yukawa}}$$

• la forme la plus générale du potentiel THDM : $V_{THDM} = \mu_{11}^2 \Phi_1^{\dagger} \Phi_1 + \mu_{22}^2 \Phi_2^{\dagger} \Phi_2 - (\mu_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c) + \frac{\Lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\Lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \Lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \Lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \{\Lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\Lambda_6 (\Phi_1^{\dagger} \Phi_1)^2 + \Lambda_7 (\Phi_2^{\dagger} \Phi_2)^2] (\Phi_1^{\dagger} \Phi_2) + h.c\}$

où μ_{11},μ_{22} , et $\Lambda_{1,2,3,4} \in \mathbb{R}$ (l'herméticité du potentiel), et μ_{12} et $\Lambda_{5,6,7}$ peuvent être complexes.

 $\Rightarrow \Lambda_{6,7} = 0$ si on impose que le potentiel soit invariant sous la symétrie discrète Z_2 ($\Phi_1 \rightarrow \Phi_1 \text{ et}(\Phi_2 \rightarrow -\Phi_2)$)

Les paramètres libres : 8 paramètres

le secteur scalaire de THDM

La valeur moyenne dans le vide

le secteur scalaire de THDM

La valeur moyenne dans le vide

On développe le potentiel autour du vide avec la nouvelle paramétrisation :

$$\begin{split} V_{THMD} &= \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 - \frac{v_1^2}{2} \right)^2 + \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 - \frac{v_2^2}{2} \right)^2 + \lambda_3 \left\{ \Phi_1^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_2 - \frac{v_1^2 + v_2^2}{2} \right\}^2 + \\ \lambda_4 \left\{ (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) - (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \right\} + \lambda_5 \left(\Re (\Phi_1^{\dagger} \Phi_2) - \frac{v_1 v_2}{2} \right)^2 + \lambda_6 \left(\Im (\Phi_1^{\dagger} \Phi_2) \right)^2 \end{split}$$

Les matrices de masse

• les champs $\Phi_{1,2}$ autour du vide :

$$\Phi_i = \begin{pmatrix} \phi_i^+ \\ \frac{1}{\sqrt{2}} (v_i + \Re(\phi_i^0) + i\Im(\phi_i^0)) \end{pmatrix} \quad ; i = 1, 2$$

Les matrices de masse

• les champs $\Phi_{1,2}$ autour du vide :

$$\Phi_i = \begin{pmatrix} \phi_i^+ \\ \frac{1}{\sqrt{2}} (v_i + \Re(\phi_i^0) + i \Im(\phi_i^0)) \end{pmatrix} \quad ; i = 1, 2$$

• la matrice de masse :

$$M_{ij}^2 = \frac{1}{2} \frac{\partial^2 V}{\partial \phi_i \partial \phi_j}|_{vac}$$
; $i, j = 1, 2..., 8$

Les matrices de masse

• les champs $\Phi_{1,2}$ autour du vide :

$$\Phi_i = \begin{pmatrix} \phi_i^+ \\ \frac{1}{\sqrt{2}} (\nu_i + \Re(\phi_i^0) + i \Im(\phi_i^0)) \end{pmatrix} \quad ; i = 1, 2$$

• la matrice de masse :

$$M_{ij}^2 = \frac{1}{2} \frac{\partial^2 V}{\partial \phi_i \partial \phi_j}|_{vac}$$
; $i, j = 1, 2..., 8$

• 5 Bosons de Higgs physiques :2 Higgs charges H^{\pm} , 2 bosons de Higgs neutres CP{pair} H^0 , h^0 ;et un boson de Higgs neutre CP{impair} A^0 .

Les matrices de masse

• les champs $\Phi_{1,2}$ autour du vide :

$$\Phi_i = \begin{pmatrix} \phi_i^+ \\ \frac{1}{\sqrt{2}} (\nu_i + \Re(\phi_i^0) + i \Im(\phi_i^0)) \end{pmatrix} \quad ; i = 1, 2$$

• la matrice de masse :

$$M_{ij}^2 = \frac{1}{2} \frac{\partial^2 V}{\partial \phi_i \partial \phi_j}|_{vac}$$
; $i, j = 1, 2..., 8$

- 5 Bosons de Higgs physiques :2 Higgs charges H^{\pm} , 2 bosons de Higgs neutres CP{pair} H^0 , h^0 ;et un boson de Higgs neutre CP{impair} A^0 .
- Les paramètres physiques : M_{H[±]}, M_{H⁰}, M_{h⁰}, M_{A⁰}, α, tan β, m₁₂.

les couplages des bosons de Higgs aux bosons de jauge

$$\mathcal{L}_{CIN} = (D_{\mu}\Phi_{1})^{\dagger}(D^{\mu}\Phi_{1}) + (D_{\mu}\Phi_{2})^{\dagger}(D^{\mu}\Phi_{2})$$

avec

$$D_{\mu} = \partial_{\mu} - igT_iW^i_{\mu} - ig'\frac{Y_{\Phi_{1,2}}}{2}B_{\mu}$$

$$\Phi_{1} = \begin{pmatrix} G^{\pm} \cos\beta - H^{\pm} \sin\beta \\ \frac{1}{\sqrt{2}} (v_{1} + H^{0} \cos\alpha - h^{0} \sin\alpha + iG^{0} \cos\beta - iA^{0} \sin\beta) \end{pmatrix}$$
$$\Phi_{2} = \begin{pmatrix} G^{\pm} \sin\beta + H^{\pm} \cos\beta \\ \frac{1}{\sqrt{2}} (v_{2} + H^{0} \sin\alpha + h^{0} \cos\alpha + iG^{0} \sin\beta + iA^{0} \cos\beta) \end{pmatrix}$$

$$\Phi_{1} = \cos\beta \begin{pmatrix} G^{\pm} \\ \frac{1}{\sqrt{2}} (v_{1} - \phi_{1}^{0} + iG^{0}) \end{pmatrix} - \sin\beta \begin{pmatrix} H^{\pm} \\ \frac{1}{\sqrt{2}} (\phi_{2}^{0} + iA^{0}) \end{pmatrix}$$

$$\Phi_{2} = \sin\beta \begin{pmatrix} G^{\pm} \\ \frac{1}{\sqrt{2}} (v_{1} - \phi_{1}^{0} + iG^{0}) \end{pmatrix} + \cos\beta \begin{pmatrix} H^{\pm} \\ \frac{1}{\sqrt{2}} (\phi_{2}^{0} + iA^{0}) \end{pmatrix}$$

Secteur de Yukawa

2HDM-I

- Le lagrangien de Yukawa pour 2HDM-I : $-\mathcal{L}'_{Y} = \xi^{ij}_{U,0} \overline{Q}^{0}_{iL} \Phi^{c}_{2} U^{0}_{jR} + \xi^{ij}_{D,0} \overline{Q}^{0}_{iL} \Phi_{2} D^{0}_{j,R} + \xi^{ij}_{E,0} \overline{L}^{0}_{iL} \Phi_{2} E^{0}_{jR} + hc,$
- Après la brisure $\Phi_2 \mapsto v_2 : \Rightarrow M_{u,d,l} = \frac{v_2}{\sqrt{2}} \xi^0_{u,d,l}$

Secteur de Yukawa

2HDM-I

- Le lagrangien de Yukawa pour 2HDM-I : $-\mathcal{L}'_{Y} = \xi^{ij}_{U,0} \overline{Q}^{0}_{iL} \Phi^{c}_{2} U^{0}_{jR} + \xi^{ij}_{D,0} \overline{Q}^{0}_{iL} \Phi_{2} D^{0}_{j,R} + \xi^{ij}_{E,0} \overline{L}^{0}_{iL} \Phi_{2} E^{0}_{jR} + hc,$
- Après la brisure $\Phi_2 \mapsto v_2 : \Rightarrow M_{u,d,l} = \frac{v_2}{\sqrt{2}} \xi^0_{u,d,l}$

2HDM-II

• Le lagrangien de Yukawa pour 2HDM-II : $-\mathcal{L}_{Y}^{II} = \eta_{D,0}^{ij} \overline{Q}_{iL}^{0} \Phi_{1} D_{j,R}^{0} + \xi_{U,0}^{ij} \overline{Q}_{iL}^{0} \Phi_{2}^{c} U_{jR}^{0} + \xi_{E,0}^{ij} \overline{L}_{iL}^{0} \Phi_{2} E_{jR}^{0} + hc,$

• Après la brisure : $\Rightarrow M_u = \frac{v_2}{\sqrt{2}} \xi_{u,0}, M_d = \frac{v_1}{\sqrt{2}} \eta_{d,0}, M_l = \frac{v_2}{\sqrt{2}} \xi_{l,0},$

Secteur de Yukawa

2HDM-I

- Le lagrangien de Yukawa pour 2HDM-I : $-\mathcal{L}'_{Y} = \xi^{ij}_{U,0} \overline{Q}^{0}_{iL} \Phi^{c}_{2} U^{0}_{jR} + \xi^{ij}_{D,0} \overline{Q}^{0}_{iL} \Phi_{2} D^{0}_{j,R} + \xi^{ij}_{E,0} \overline{L}^{0}_{iL} \Phi_{2} E^{0}_{jR} + hc,$
- Après la brisure $\Phi_2 \mapsto v_2 : \Rightarrow M_{u,d,l} = \frac{v_2}{\sqrt{2}} \xi^0_{u,d,l}$

2HDM-II

• Le lagrangien de Yukawa pour 2HDM-II : $-\mathcal{L}_{Y}^{II} = \eta_{D,0}^{ij} \overline{Q}_{iL}^{0} \Phi_{1} D_{j,R}^{0} + \xi_{U,0}^{ij} \overline{Q}_{iL}^{0} \Phi_{2}^{c} U_{jR}^{0} + \xi_{E,0}^{ij} \overline{L}_{iL}^{0} \Phi_{2} E_{jR}^{0} + hc,$

• Après la brisure : $\Rightarrow M_u = \frac{v_2}{\sqrt{2}} \xi_{u,0}, M_d = \frac{v_1}{\sqrt{2}} \eta_{d,0}, M_l = \frac{v_2}{\sqrt{2}} \xi_{l,0},$

	Туре-І			Type-II		
	h	Α	Н	h	Α	Н
Qυ	$\frac{\cos \alpha}{\sin \beta}$	$\cot \beta$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\cot \beta$	$\frac{\sin \alpha}{\sin \beta}$
Q _D et L	$\frac{\cos \alpha}{\sin \beta}$	$-\cot\beta$	$\frac{\sin \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	aneta	$\frac{\cos \alpha}{\cos \beta}$

VLQs

- les vecteurs quarks (VLQs) sont les partenaires fermioniques des quarks :
 - Peuvent être singlets, doublets ou triplets.
 - Les chiralité gauches et droites des quarks vecteurs se transforment de la même manière selon le groupe de jauge du SM $SU_c(3) \times SU_L(2) \times U_Y(1)$

VLQs

- les vecteurs quarks (VLQs) sont les partenaires fermioniques des quarks :
 - Peuvent être singlets, doublets ou triplets.
 - Les chiralité gauches et droites des quarks vecteurs se transforment de la même manière selon le groupe de jauge du SM $SU_c(3) \times SU_L(2) \times U_Y(1)$
- Les courants chargés

$$\mathcal{L}_W = rac{g}{\sqrt{2}}(J^{\mu+}W+_\mu+J^{\mu-}W^-_\mu)$$

• Les quarks chiraux du MS : $J^{\mu+} = J^{\mu+}_L + J^{\mu+}_R$; $\begin{cases} J^{\mu+}_L = \overline{u}_L \gamma^{\mu} d_L = \overline{u} \gamma^{\mu} (1 - \gamma^5) d = V - A \\ J^{\mu+}_R = 0 \end{cases}$

VLQs

- les vecteurs quarks (VLQs) sont les partenaires fermioniques des quarks :
 - Peuvent être singlets, doublets ou triplets.
 - Les chiralité gauches et droites des quarks vecteurs se transforment de la même manière selon le groupe de jauge du SM $SU_c(3) \times SU_L(2) \times U_Y(1)$
- Les courants chargés

$$\mathcal{L}_W = rac{g}{\sqrt{2}}(J^{\mu+}W+_\mu+J^{\mu-}W^-_\mu)$$

• Les quarks chiraux du MS :

$$J^{\mu+} = J^{\mu+}_L + J^{\mu+}_R; \begin{cases} J^{\mu+}_L = \overline{u}_L \gamma^{\mu} d_L = \overline{u} \gamma^{\mu} (1-\gamma^5) d = V - A \\ J^{\mu+}_R = 0 \end{cases}$$

• Les quarks vectoriels (non-chiral) : $J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} = \overline{u}_L \gamma^{\mu} d_L + \overline{u}_R \gamma^{\mu} d_R = \overline{u} \gamma^{\mu} d = V$ Mohammed MOUHCINE 24 avril 2017

Considérons les quarks lourds T, B, X, Y, dont les composantes gauches et droites ont les mêmes nombres quantiques, tel que :

Multiplets	VLQs	$(SU_L(2) \times U_Y(1))$	(T_3, Q_{em})
Singlets	$T^0_{L,R}$	(1, +2/3)	(0,2/3)
Singlets	$B_{L,R}^0$	(1,-1/3)	(0,2/3)
	$\begin{pmatrix} X \\ T^0 \end{pmatrix}_{IR}$	(2,7/6)	(1/2,+5/3)
Doublets			(-1/2,+2/3)
Doublets	$\begin{pmatrix} T^0\\B^0 \end{pmatrix}_{IB}$	(2,1/6)	(1/2,+2/3)
			(-1/2,-1/3)
	$\begin{pmatrix} B^0 \\ Y \end{pmatrix}_{IR}$	(2,-5/6)	(1/2,-1/3)
	× 7 E,R		(-1/2,-4/3)
	$\begin{pmatrix} X \\ T^{0} \\ B^{0} \end{pmatrix}_{L,R}$	(3,2/3)	$(-1,+5/3) \ (0,+2/3) \ (1,-1/3)$
Triplets	$ \begin{pmatrix} T^{0} \\ B^{0} \\ Y \end{pmatrix}_{L,R} $	(3,-1/3)	$(-1,+2/3)\ (0,-1/3)\ (1,-4/3)$

2HDM-II + T

Le lagrangien de Yukawa de type II :

$$-\mathcal{L}_{Y}^{II} \supset y_{d} \overline{Q}_{iL} \Phi_{1} D_{j,R} + y_{u} \overline{Q}_{iL} \Phi_{2}^{c} U_{jR} + hc,$$

$$\Phi_{i}^{c} = \begin{pmatrix} \Phi_{i}^{0*} \\ -\Phi_{i}^{-*} \end{pmatrix} \overline{Q}_{iL}^{0} = \begin{pmatrix} \overline{U}_{iL}^{0} & \overline{D}_{iL}^{0} \end{pmatrix} \qquad Q_{iL}^{0} = \begin{pmatrix} U_{iL}^{0} \\ D_{iL}^{0} \end{pmatrix}$$

- Addition du quark vectoriel $up \ T$ au \mathcal{L}_Y'' : $-\mathcal{L}_T'' \supset y_u \overline{t}_L \Phi_2^c t_R + y_1 \overline{t}_L \Phi_1^c T_R + M_T \overline{T}_L T_R$
- Après EWSB :

$$-\mathcal{L}^{mass} = \frac{1}{\sqrt{2}} (y_u v_2 \overline{t}_L t_R + y_1 v_1 \overline{t}_L T_R + \text{h.c}) + M_T \overline{T}_L T_R$$

2HDM-II + T

Le lagrangien de Yukawa de type II :

$$-\mathcal{L}_{Y}^{II} \supset y_{d}\overline{Q}_{iL}\Phi_{1}D_{j,R} + y_{u}\overline{Q}_{iL}\Phi_{2}^{c}U_{jR} + hc,$$

$$\Phi_{i}^{c} = \begin{pmatrix} \Phi_{i}^{0*} \\ -\Phi_{i}^{-*} \end{pmatrix} \overline{Q}_{iL}^{0} = \begin{pmatrix} \overline{U}_{iL}^{0} & \overline{D}_{iL}^{0} \end{pmatrix} \qquad Q_{iL}^{0} = \begin{pmatrix} U_{iL}^{0} \\ D_{iL}^{0} \end{pmatrix}$$

• Addition du quark vectoriel *up* T au \mathcal{L}_Y^{II} : $-\mathcal{L}_T^{II} \supset y_u \overline{t}_L \Phi_2^c t_R + y_1 \overline{t}_L \Phi_1^c T_R + M_T \overline{T}_L T_R$ • Après EWSB :

$$-\mathcal{L}^{mass} = \frac{1}{\sqrt{2}} (y_u v_2 \overline{t}_L t_R + y_1 v_1 \overline{t}_L T_R + h.c) + M_T \overline{T}_L T_R$$
$$-\mathcal{L}_{mass} = (\overline{t}_L \quad \overline{T}_L) \underbrace{\begin{pmatrix} y_u \frac{v_2}{\sqrt{2}} & y_1 \frac{v_1}{\sqrt{2}} \\ 0 & M_T \end{pmatrix}}_{\widehat{M}_u} \begin{pmatrix} t_R \\ T_R \end{pmatrix} + hc$$

La diagonalisation de la matrice \widehat{M}_u : $U_L^u \widehat{M}_u (U_R^u)^{\dagger} = \mathcal{M}_{diag}^u = \begin{pmatrix} m_t \\ m_T \end{pmatrix}$ avec $U_{L,R}^u$ sont des matrices unitaires 2×2 :

La diagonalisation de la matrice \hat{M}_{ii} : $U_L^u \widehat{M}_u (U_R^u)^{\dagger} = \mathcal{M}_{diag}^u = \begin{pmatrix} m_t \\ m_{\tau} \end{pmatrix}$ avec U_{IR}^{u} sont des matrices unitaires 2 × 2 : $\begin{pmatrix} t_{L,R} \\ T_{L,R} \end{pmatrix} = U_{L,R}^{u} \begin{pmatrix} t_{L,R}^{0} \\ T_{L,R}^{0} \end{pmatrix} = \begin{pmatrix} \cos\theta_{L,R}^{u} & -\sin\theta_{L,R}^{u} \\ \sin\theta_{L,R}^{u} & \cos\theta_{L,R}^{u} \end{pmatrix} \begin{pmatrix} t_{L,R}^{0} \\ T_{L,R}^{0} \end{pmatrix}$ $U_{L,R}\widehat{M}\widehat{M}^{\dagger}(U_{L,R})^{\dagger} = \mathcal{M}_{diag}^2$ \Rightarrow $\tan(2\theta_L) = \frac{-2\sqrt{2}y_1v_1M_T}{v_1^2v_2^2 - 2M_T^2 + v_1^2v_1^2}, \ \tan(2\theta_R) = \frac{2\sqrt{2}y_1y_uv_1v_2}{v_1^2v_2^2 - 2M_T^2 - v_1v_2}$ $\tan(\theta_R) = \frac{m_t}{m_T} \tan(\theta_L)$

$$m_{t/T} = \frac{1}{2} \left(\sqrt{\left(\frac{y_u}{\sqrt{2}}v_2 + M_T\right) + \frac{y_1^2}{2}v_1^2} \pm \sqrt{\left(\frac{y_u}{\sqrt{2}}v_2 - M_T\right) + \frac{y_1^2}{2}v_1^2} \right)$$

La rotation entre états propres d'interaction et les états propres de masse :

$$\begin{split} t_{L,R} &= \cos \theta_{L,R}^{u} t_{L,R}^{0} - \sin \theta_{L,R}^{u} T_{L,R}^{0} \\ T_{L,R} &= \sin \theta_{L,R}^{u} t_{L,R}^{0} + \cos \theta_{L,R}^{u} T_{L,R}^{0} \\ \Rightarrow \text{ Modification des couplages des Higgs aux fermions :} \end{split}$$

$$g_{htt} = (c_L c_R \frac{\cos \alpha}{\sin \beta} - \frac{y_1}{y_u} c_L s_R \frac{\sin \alpha}{\sin \beta}) g_{htt}^{SM}$$
$$g_{hTT} = (s_L s_R \frac{\cos \alpha}{\sin \beta} + \frac{y_1}{y_u} s_L s_R \frac{\sin \alpha}{\sin \beta}) g_{htt}^{SM}$$
$$g_{hTt} = (-s_L s_R \frac{\cos \alpha}{\sin \beta} + \frac{y_1}{y_u} c_L s_R \frac{\sin \alpha}{\sin \beta}) g_{htt}^{SM}$$

2HDM-I + T

Le lagrangien de Yukawa de type I :

$$-\mathcal{L}_{Y}^{I} \supset y_{d}\overline{Q}_{iL}\Phi_{2}D_{j,R} + y_{u}\overline{Q}_{iL}\Phi_{2}^{c}U_{jR} + hc,$$

• Addition du quark vectoriel *up T* au \mathcal{L}_{Y}^{I} :
 $-\mathcal{L}_{T}^{I} \supset y_{u}\overline{t}_{L}\Phi_{2}^{c}t_{R} + y_{1}\overline{t}_{L}\Phi_{2}^{c}T_{R} + M_{T}\overline{T}_{L}T_{R}$
• Après EWSB :

$$-\mathcal{L}^{mass} = \frac{1}{\sqrt{2}} (y_u v_2 \overline{t}_L t_R + y_1 v_2 \overline{t}_L T_R + h.c) + M_T \overline{T}_L T_R$$

2HDM-I + T

Le lagrangien de Yukawa de type I :

$$-\mathcal{L}'_{Y} \supset y_{d} \overline{Q}_{iL} \Phi_{2} D_{j,R} + y_{u} \overline{Q}_{iL} \Phi_{2}^{c} U_{jR} + hc,$$

• Addition du quark vectoriel *up* T au \mathcal{L}'_{Y} :
 $-\mathcal{L}'_{T} \supset y_{u} \overline{t}_{L} \Phi_{2}^{c} t_{R} + y_{1} \overline{t}_{L} \Phi_{2}^{c} T_{R} + M_{T} \overline{T}_{L} T_{R}$
• Après EWSB :

$$-\mathcal{L}^{mass} = \frac{1}{\sqrt{2}} (y_u v_2 \overline{t}_L t_R + y_1 v_2 \overline{t}_L T_R + \text{h.c}) + M_T \overline{T}_L T_R$$
$$\widehat{M}_u = \begin{pmatrix} y_u \frac{v_2}{\sqrt{2}} & y_1 \frac{v_2}{\sqrt{2}} \\ 0 & M_T \end{pmatrix}$$

Avec les couplages :

$$g_{htt} = (c_L c_R + \frac{y_1}{y_u} c_L s_R) \frac{\cos \alpha}{\sin \beta} g_{htt}^{SM}$$

Plan

2HDM+VLQs 2HDM : Brief description Vector-like quarks : VLQs

8 Résultats préliminaires

Résultats :2HDM-I+Top

Résultats :2HDM-I+Top

Résultats :2HDM-II+Top

Résultats :2HDM-II+Top

Plan

2HDM+VLQs 2HDM : Brief description Vector-like guarks : VLQs

3 Résultats préliminaires

Conclusion & Perpectives

- ✓ Le 2HDM+VLQs permet :
- ✓ Étendre le secteur scalaire(H^{\pm} , H^{0} , h^{0} et A^{0})
- Ajouter de nouvelles particules autorisées par les données expérimentales.
- L'espace des paramètres de 2HDM+T est relativement contrait vs 2HDM

Conclusion & Perpectives

✓ Le 2HDM+VLQs permet :

- ✓ Étendre le secteur scalaire(H^{\pm} , H^{0} , h^{0} et A^{0})
- Ajouter de nouvelles particules autorisées par les données expérimentales.
- L'espace des paramètres de 2HDM+T est relativement contrait vs 2HDM

Perpectives :

- * Refaire les Scans avec les données Run-II (ATLAS, CMS).
- * Etudier les différents modes de désintégration dans 2HDMs + VLQ, comme : $A, H- > \gamma z$, A, H- > Tt, ...
- * Rajout du Bottom partner B in 2HDMs.

