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What’s covered here

• Setting up the tutorial 
• What is RooFit? 
• Brief statistics review 
• Practical examples 

• Simple number counting experiment with systematics 
• Fitting signal on top of background (binned shape fit) 
• Profiled unfolding 
• Reparametrization 
• Combinations 
• Compatibility tests 
• Dealing with covariance matrices 

• Other tools 
• Debugging and common problems
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Setting up

• Tutorial is on git: > git clone https://:@gitlab.cern.ch:8443/armbrust/RooFit-tutorial.git 
• Latest version also on afs:  

• /afs/cern.ch/work/a/armbrust/RooFit-tutorial 
• There is a large 3.4GB ntuple file that you don’t necessarily need (histograms made from it are 

included in the git repository), but I’ll keep it available here for posterity: 
• /afs/cern.ch/work/a/armbrust/tree.root 

• Setup script setup.sh for running on lxplus: 
• > source setup_lxplus.sh 

• The tutorial should also be able to be ran locally on your laptop with a reasonably recent ROOT 
version (5.34.X) after running setup.sh 

• > source setup.sh 
• On Mac, for some reason ROOT < 5.34.21 didn’t want to work for me, but your mileage may vary 
• That’s all!

https://:@gitlab.cern.ch:8443/armbrust/RooFit-tutorial.git


 4

What is RooFit?
• RooFit is an object oriented modelling framework written in c++, built on top of ROOT 
• Heavily uses abstraction to be able to create high level models, which can later be built upon by 

even higher level packages (RooStats, HistFactory, etc) that implement concrete statistical tools 
• Somewhat high learning curve 

• Though almost all of the time the common design themes are followed, occasionally a class 
has unexpected behavior that makes debugging difficult!

ROOT

RooFit

RooAbsPdf

RooAbsReal

RooFormulaVar
RooBrentRootFinderFunc

RooGaussian

RooKeysPdf

RooPoisson

RooGamma

RooAbsData
RooDataHist

RooDataSet

RooAbsRealLValue

RooRealVar

RooAddition RooProduct

RooSimultaneous

~300 classes
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What is RooFit?

RooFit

HistFactory RooStats

• HistFactory and RooStats are built on top of RooFit 
• HistFactory is a class-based package that builds a likelihood and data out of input histograms, 

including systematics, which imported into a RooWorkspace and written to a TFile 
• RooStats is a collection of tools used to perform statistical calculations 
• HistFitter is a python wrapper that interfaces the HistFactory output with RooStats tools

MakeModelAndMeasurementsFast

Channel
Sample

Data

Measurement

HistFitter

ROOT

FlexibleInterpVar
PiecewiseInterpolation

ParamHistFunc

TestStatistic

ProfileLikelihoodTestStat
NumEventsTestStat

SimpleLikelihoodRatioTestStat
RatioOfProfiledLikelihoodTestStat

SamplingDistribution

TestStatSampler

ToyMCSampler

AsymptoticCalculator

FrequentistCalculator

HybridCalculator

HypoTestCalculatorGeneric

~20 classes
~60 classes
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What is RooFit?

RooFit

HistFactory RooStats

• Many custom tools developed by different analysis groups that combine elements of RooFit, 
HistFactory, and RooStats to build statistical models of the analysis and do statistics 

• Many times rederived from previous analysis’ tools and adapted to new analysis 
• Most of the time not “officially” supported 
• Usually similar themes and functionality in all of these 
• However, in the hands of an expert, custom built tools lead to a very flexible framework for 

doing statistics for your specific analysis, which is why they are so widely used compared 
to more official tools 

• ROOT tutorials contain not only examples for RooFit, HistFactory, and RooStats, but also a nice 
set of top-level tools you can use out-of-the-box (or with minimal tuning) for your analysis

HistFitter

ROOT

Custom Tools,
ROOT Tutorials
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Brief statistics review: Likelihood formalism

• Elements of a likelihood: 
• Ldata is the portion of the likelihood representing your data “N” 
• A represents some auxiliary measurement already done for you, compressed into a single 

term such as a unit Gaussian or Poisson 
• Could be JES, lepton efficiency, scale, resolution, some PDF EV, etc 

• N is eg the number of observed events after selections, or the observed pTll distribution for 
Z’s, etc 

• µ is the set of parameters of interest (POIs) that you ultimately wish to measure, eg an 
integrated or differential cross-section or a SM parameter 

• θ is the set of nuisance parameters (NPs) corresponding to the auxiliary measurements A, 
and represents new measurements in your phase space of data. θ are most commonly used 
to implement systematics or background normalizations  

• ~θ is the set of old measurements, and is normally fixed at a single value, except in toy MC 
• Today I’ll focus on binned likelihoods, which are just products of Poisson probabilities for each 

bin: Ldata = Πi P(Ni | Ei(µ, θ))
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Brief statistics review: Test statistics

• A test statistic is any function of the data, which has an obtainable probability distribution 
• The Neyman-Pearson lemma states that, in the absence of systematics, the ratio of likelihoods 

between two hypotheses is the most powerful statistical test to separate those hypotheses: 
• Λ(x) = L(x | H1) / L(x | H2) 

• Strictly speaking, this proof doesn’t hold in the presence of systematics, but this is the motivation 
for the profile likelihood ratio used in modern HEP

• Here, the numerator is the likelihood maximized at a fixed point of the POIs (aka conditional 
likelihood), and the denominator is the likelihood maximized over all paramaters (unconditional 
likelihood)  

• The one-sided profile likelihood test statistic tµ is simply the -2 log of this

• Less trivial forms of this exist and are used in searches, but for today this is the only thing we’ll 
use. See arxiv.org/abs/1007.1727 for more details

http://arxiv.org/abs/1007.1727
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Brief statistics review: Sampling distributions

• The sampling distribution of a test statistic is simply it’s probability distribution under pseudo-
experiments, ie under Poisson variations of N observed in each bin of your distribution 

• Wilk’s theorem states that, for a single POI µ, the distribution of tµ asymptotically (when N is 
large) approaches a χ2 with one degree of freedom

• Integrating this, tail probability for an 
observed value of tµ is

• Notably, pµ = 0.32 (ie, 68% CL or 1σ) 
corresponds to sqrt(tµ) = 1, and in 
general N σ corresponds to sqrt(tµ) = N • Important feature: f(tµ) doesn’t depend 

explicitely on the parameters of the 
model µ, θ, only on the observed value 
tµ itself!
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Practical example: Simple number counting experiment

• Exercise: 
• Look through SimpleNumberCounting.C 
• Run it: > root -b -q ex/SimpleNumberCounting.C 
• Open file and look through workspace 

• SimpleNumberCounting.C builds a HistFactory model for a single 
bin counting experiment:  

• L = P(N | µ*S + B)
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SimpleNumberCounting.C
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SimpleNumberCounting.C
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Practical example: Simple fit

• Exercise: 
• Look through macros/simpleFit.C 
• Run it on the workspace we just made:  

• > root -b -q ‘macros/simpleFit.C(“SimpleNumberCounting”)’ 
• Examine output 

• simpleFit.C will run a single unconditional fit of the likelihood, and print the maximum likelihood 
estimators µ hat and θ hat: 
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Practical example: Simple fit
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Simple fit

Configuration

Minimization

Results

Error estimate

Best fit
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Likelihood scan

• Exercise: 
• Look through macros/scanLikelihood.C 
• Run it: > root ‘macros/scanLikelihood.C(“SimpleNumberCounting”,”mu”,2,20)’ 
• Run over the Lumi nuisance parameter: 

• > root ‘macros/scanLikelihood.C(“SimpleNumberCounting”,”Lumi”,0.04,20)’ 
• Examine plot 

• scanLikelihood.C will compute the test statistic tα at various points in the specified parameter α 
(not necessarily µ)
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Likelihood scan
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Likelihood scan
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Practical example: On/Off problem, with systematics

• Exercise: 
• Look through ex/OnOff.C 
• Run it: > root -b -q ex/OnOff.C 
• Open the workspace and look through 
• Make likelihood scans of all parameters 

• OnOff.C adds three additional elements: a background control-region, a corresponding background 
normalization parameter, and systematic uncertainties 

• L = P(NSR | µ * SSR(θ) + µB * BSR(θ)) * P(NCR | µ * SCR(θ) + µB * BCR(θ)) * G(θ, 0, 1)
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Systematics (can be asymmetric)

Control region}

Background normalization
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Practical example: On/Off problem, with systematics
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Minos uncertainties
• Uncertainties shown in the MINUIT printout are approximate hessian errors 
• These are computed from derivatives using finite differences around the minimum of the 

likelihood, and in general depend on the minimization path that MINUIT takes 
• They are generally lower than the true uncertainty on the parameter, and not very reliable without 

some validation  
• Recall: The 1σ point for a parameter µ corresponds to the value of µ when tµ = 1 
• A “Minos” algorithm performs a likelihood scan to numerically find the crossing tµ = 1 
• The helper function macros/findSigma.C

Best fit

Best fit
+1σ 

Best fit
-1σ 

tμ = 1 tμ = 1
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Error breakdowns
• The uncertainty σ can be broken down into quadrature components based on contributions from 

individual fit parameters, and therefore individual sources or groups of uncertainties 
• The uncertainty σ computed when one or more nuisance parameters are fixed to their best fit value 

will be smaller than the total uncertainty

-2 ln Λ with θ fixed to θ hat

• σ2tot = σ2data + Σsys σ2sys 
• Each component σsys can be 

computed by finding σtot, then 
the σ having fixed “sys”, and 
taking the quadrature difference: 

• σ2sys = σ2tot - σ2(θsys-fixed)
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Practical example: Parameter uncertainty with breakdown

• Exercise: 
• Open macros/getErrorWithBreakdown.C 
• Run it on µ from the OnOff model:  

• > root -b -q ‘macros/getErrorWithBreakdown.C(“OnOff”,”mu”)’ 
• Examine output



 37

Practical example: Parameter uncertainty with breakdown

• Output when running over mu: > root -b -q ‘macros/getErrorWithBreakdown.C(“OnOff”,”mu”)’
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Practical example: Fitting a distribution
• Exercise: 

• Run ex/ShapeFit_makeHists.C to make histogram inputs for a shape fit: 
• > root ex/ShapeFit_makeHists.C 

• Open ex/ShapeFit.C and run it: 
• > root ex/ShapeFit.C 

• This exercise introduces two main elements: Multiple bins (shape), and shape systematics
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Practical example: Fitting a distribution

Shape systematics

• Exercise: 
• Run ex/ShapeFit_makeHists.C to make histogram inputs for a shape fit: 

• > root ex/ShapeFit_makeHists.C 
• Open ex/ShapeFit.C and run it: 

• > root ex/ShapeFit.C 
• This exercise introduces two main elements: Multiple bins (shape), and shape systematics
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Nuisance parameter pulls/constraints
• The data has an interesting feature (by pure TRandom chance!): The distribution seems 

systematically shifted to the left 
• This is something that could delay an analysis by months, but is really just Poisson statistics 
• It nicely serves as an example for studying NP pulls 

• The best fit value of a NP θ may not be centered at zero due to fluctuations of the data 
• Just as with POIs, you can find the best fit value and uncertainty on NPs, which pre-fit were unit 

Gaussian
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Nuisance parameter pulls/constraints

• Exercise: 
• Run getErrorWithBreakdown.C over various model parameters and examine output: 

• > root -b -q ‘macros/getErrorWithBreakdown.C(“ShapeFit”,”alpha_Scale”)’ 
• > root -b -q ‘macros/getErrorWithBreakdown.C(“ShapeFit”,”alpha_Slope”)’ 
• > root -b -q ‘macros/getErrorWithBreakdown.C(“ShapeFit”,”alpha_sys_S”)’ 
• > root -b -q ‘macros/getErrorWithBreakdown.C(“ShapeFit”,”alpha_sys_B”)’
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Matrix Inversion

• Matrix inversion is the most basic form of unfolding 
• A binned reconstructed distribution can be inverted to obtain an estimate of the true underlying 

distribution 
• Reconstructed distribution is comprised of different truth contributions, and some background: 

• N(i) = B(i) + Σj R(ij) * S(j) 
• N(i) is i’th bin of the reconstructed distribution 
• B(i) is the estimated background 
• S(j) is the underlying distribution of interest, in bins of truth “j” 
• R(ij) is the response matrix, not to be confused with the migration matrix! 

• Formula is inverted (equivalently, data is unfolded) to estimate the true distribution S(j). 
Response matrix corrects for experimental migrations, acceptance, and efficiency. 

• S = R-1 * (N - B)

S1

S2

S3

 R-1 * (N - B)
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Response matrix
• “Response matrix” is the migration matrix, 

after correcting for efficiency, possibly 
acceptance!) 

• Generally estimated from MC, the response 
matrix is subject to theoretical, experimental, 
and MC stat uncertainties 

• For matrix inversion, this is all you need to 
unfold the distributions (but still need unc.)

Σireco M(ij) = 1

R(ij) = M(ij) * ε(ij) * A(ij)
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Unfolding via likelihood

• Response matrix Rij can be written in terms the number of reco and truth events in a given 
analysis bin: Rij = Nrecoij / Ntruthi  

• Ntruthi is the number of expected truth events in truth bin ‘i’ of your fiducial definition 

• Nrecoij is the number of expected reconstructed events in reco bin ‘j’, AND truth bin ‘i’ of your 
fiducial definition 

• Binned likelihood can be written out in terms of the response matrix Rij, integrated lumi Lint, 
background B, and non-fiducial signal Snonfid, and finally “unfolded” cross-section parameters σi 

• L(σ) = Πj P(Nj | Lint * Σi Rijσi + Bj + Snon-fidj ) 
• Non-fiducial signal Snon-fid is technically treated as a background, representing the signal 

contribution outside of your truth fiducial region but passing your reco selections

Ntruthi

Nrecoij
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Practical example: Profiled unfolding
• Exercise: 

• Open ex/ProfiledUnfolding_makeHists.C 
• Either run it, or use hists already created in hists/ProfiledUnfolding.root 

• > root -b -q ex/ProfiledUnfolding_makeHists.C 
• Examine output 
• Open ex/ProfiledUnfolding.C (workspace building code) 
• Run it: > root -b -q ex/ProfiledUnfolding.C 
• Run a simple fit: > root -b -q ‘macros/simpleFit.C(“ProfiledUnfolding”)’ 

• Open histograms and print the truth distribution to check the closure of the fit: 
• > root hists/ProfiledUnfolding.root 
• > yZ_truth->Print("all")
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Reparametrization
• Often you’ll want to re-express your baseline measurements in terms of something else 

• From absolute differential measurement to shape differential: dσ/dX -> 1/σ * (dσ/dX) 
• From measurement of a distribution to a SM parameter: AFB - > sin2θW 

• From measurements in individual channels to ‘delta’ parameters for compatibility tests:  
(dσ/dX)ee, (dσ/dX)µµ ->  Δ(dσ / dX) = (dσ/dX)ee - (dσ/dX)µµ 

• This requires reparametrizing the likelihood from one set of parameters to a completely new set 
• This is straightforward in RooFit, as long as you can easily write an expression for the old 

parameters in terms of the new ones 
• For an absolute to shape differential measurement, this means, for example, writing: 

• Diff_X_i = Shape_X_i * Sigma_tot 
• But wait! We started with N differential parameters, and ended up with N+1, since we picked up 

Sigma_tot as well 
• There’s a degeneracy with one of the shape parameters that has to be solved 
• Instead of involving one of the new parameters, say, Shape_X_0, we can use the constraint  
Σi Shape_X_i = 1 to get rid of it. This means in the case of Diff_X_0, we instead rewrite as 

• Diff_X_0 = (1 - Σi!=0 Shape_X_i) * Sigma_tot
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Practical example: Reparametrization

• Exercise: 
• Open macros/parametrizeShape.C 
• Run it on the ProfiledUnfolding example:  

• > root -b -q ‘macros/parametrizeShape.C(“ProfiledUnfolding”)’ 
• Run a simple fit to examine the new parameters: 

• > root -b -q ‘macros/simpleFit.C(“ProfiledUnfolding_Shape”)’

New shape parameters

Total cross-section 
(summed over yZ)
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Practical example: Combinations
• A basic combination of channels can be trivial, if the names of the parameters in the model are 

identical 
• If you have to do some parameter renaming or something more complicated, best to use something 

like WorkspaceCombiner (used extensively in HComb, for instance) 
• But if you design your likelihood to be combinable from the beginning, it’s rather trivial likelihood 

multiplication 
• Exercise: 

• Make a workspace similar to the ProfiledUnfolding model, but from a different channel 
(histograms already prepared) 

• > root -b -q ex/ProfiledUnfolding_mumu.C 
• Open and examine macros/combine.C 
• Run the combination on the first and old channels 

• > root -b -q ‘macros/
combine.C(“ProfiledUnfolding,ProfiledUnfolding_mumu”,”ProfiledUnfolding_cb”)’ 

• Compare the uncertainties on the individual and combined models for one parameter 
• > root -b -q ‘macros/getErrorWithBreakdown.C(“ProfiledUnfolding”)’ 
• > root -b -q ‘macros/getErrorWithBreakdown.C(“ProfiledUnfolding_mumu”)’ 
• > root -b -q ‘macros/getErrorWithBreakdown.C(“ProfiledUnfolding_cb”)’

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/WorkspaceCombiner
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Practical example: Combinations

Each individual channel: Combined 
(~1/sqrt(2) smaller uncertainty):
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Compatibility tests

• To test the compatibility between two channels or two measurements, you can use a specific style 
of reparametrization mentioned before, ie something of the form  
Δ(dσ / dX) = [ (dσ/dX)ee - (dσ/dX)µµ ] / (dσ/dX)ee 

• This means adding new parameters that should represent for two different channels ‘chan1’ and 
‘chan2’ the relative difference in the POIs 

• Delta_POI_X = (POI_X_chan1 - POI_X_chan2) / POI_X_chan1 
• As usual, invert this to write the old parameters in terms of the new, simply as 

• POI_X_chan1 = POI_X_chan2 / (1 - Delta_POI_X) 
• In this case the POI in channel 2 doesn’t change, despite those in channel 1 changing 
• This also means that the reparametrization only has to be applied in channel 1
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Practical example: Compatibility tests
• Exercise: Reparametrize workspaces to include delta parameters, and measure the level of 

compatibility between two channels 
• Open macros/parametrizeDelta.C and look through 
• Run it on the “ee” channel (version = “ProfiledUnfolding”). This writes out a workspace 

with version name “ProfiledUnfolding_Delta”. 
• > root -b -q ‘macros/parametrizeShape.C(“ProfiledUnfolding”)’ 

• Combine the parametrized “ee” with the normal “mumu” 
• > root -b -q ‘macros/

combine.C(“ProfiledUnfolding_Delta,ProfiledUnfolding_mumu”,”ProfiledUnfoldi
ng_Delta_cb”)’ 

• Run getErrorWithBreakdown on some of the new delta parameters 
• > root -b -q ‘macros/

getErrorWithBreakdown.C(“ProfiledUnfolding_Delta_cb”,”Delta_Normalization_
yZ_0”)’
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Covariance matrices

• Problem: Not everyone uses RooFit! How can I share my result with someone if I can’t pass them 
my workspace with the data and the likelihood? 

• Solution: In principle most measurements can be fully described by their central values and the full 
covariance matrix with all parameters 

• This is easy to extract with RooFit 
• With each MINUIT minimization, a RooFitResult can be saved and returned which contains all of 

the necessary information 
• However, the quality of the covariance matrix depends on the fitting strategy you use in MINUIT 
• In “strategy 0”, the hessian matrix (the inverse of the covariance matrix) is computed along the 

minimization path, and is generally not very robust 
• In “strategy 1”, at the end of the fit the quality of the hessian is checked, and if it’s better than some 

specified criteria nothing is done, otherwise an explicit recalculation of the hessian is performed at 
the minimum 

• In “strategy 2”, the hessian is always explicitly recalculated at the minimum 
• If you want a robust covariance matrix, opt for strategy 2 
• More discussion on the difference between MINUIT strategies here: 

• https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MinuitStrategyChoice

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MinuitStrategyChoice
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Practical example: Making a covariance matrix
• Exercise: 

• Run simpleFit.C with strategy 2 (second argument of macro) for the ProfiledUnfolding 
example 

• > root -b -q ‘simpleFit.C(“ProfiledUnfolding”,2)’ 
• This saves a RooFitResult to root-files/ProfiledUnfolding/fit.root 

• Open and look through ex/MakeCovarianceMatrix.C 
• Run it: > root ‘ex/MakeCovarianceMatrix.C(“ProfiledUnfolding”)’ 
• This also writes a histogram of the central values of the measurement under “cen”
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Building a likelihood from a given covariance matrix

• Problem: Not everyone uses RooFit! How can I use someone elses results if they don’t give me a 
workspace with the likelihood and data? 

• Solution: Given the covariance and central value of the measurement, you can easily build a 
RooFit likelihood with the RooMultiVarGaussian class 

• A multi-variate Gaussian is just a Gaussian representation of N measurements µ, along with their 
covariance matrix Σ, and observables x

• x is like your POIs, µ is like your data, and Σ is exactly what you extracted in the last example
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Practical example: Building a likelihood from a given 
covariance matrix

• Exercise: Take the covariance matrix you built last example and turn it back into a likelihood with 
data 

• Open ex/MultiVarGaussian.C and look around 
• Run it over the covariance matrix from the yZ measurement you just made 

• > root -b -q ‘ex/MultiVarGaussian.C(“ProfiledUnfolding”)’ 
• This makes a workspace with version name “ProfiledUnfolding_MVG” 
• Run getErrorWithBreakdown over the exact version and the MVG you just made to see 

how they compare 
• > root -b -q ‘macros/getErrorWithBreakdown.C(“ProfiledUnfolding”,”Normalization_yZ_0”)’ 
• > root -b -q ‘macros/getErrorWithBreakdown.C(“ProfiledUnfolding_MVG”,”Normalization_yZ_0”)’

From “ProfiledUnfolding”: From “ProfiledUnfolding_MVG”:
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Other tools

• There are many other tools for other things you might want to show that I haven’t covered, for 
example 

• Running toys 
• Computing upper limits 
• Computing the statistical significance of the bkg-only hypothesis 
• Plotting PDFs and data from the workspace 
• Computing the chi2 of the fit wrt data 
• Bayesian statistics 
• Building unbinned likelihoods 
• The list goes on… 

• Many examples of these in the built-in RooFit and RooStats tutorials under $ROOTSYS/roofit and 
$ROOTSYS/roostats 

• Many tools available on the Stats forum and HComb TWiki pages 
• https://twiki.cern.ch/twiki/bin/view/AtlasProtected/StatisticsTools 
• https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HiggsProperties

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/StatisticsTools
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HiggsProperties
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Debugging and common problems
• If you get stuck, there are mailing lists for further help and support 

• General statistics questions: hn-atlas-physics-Statistics@cern.ch 
• RooFit/RooStats support: atlas-phys-stat-root@cern.ch 

• HistFactory manual: https://twiki.cern.ch/twiki/bin/view/RooStats/HistFactory 
• The most common problems are when RooFit starts to spit out error messages during a fit, like

• This means that MINUIT is trying to probe an unphysical region of the likelihood, ie trying to compute P(N 
| S+B < 0) 

• This can result from a histogram with expected <= 0 but observed > 0 for some bins 
• This can happen when the above happens under a systematic variation, despite nominal being OK 
• This can happen when the initial values of the parameters are in this unphysical region 

• The error message, through difficult to parse, gives you some hints about the problem

mailto:hn-atlas-physics-Statistics@cern.ch
mailto:atlas-phys-stat-root@cern.ch
https://twiki.cern.ch/twiki/bin/view/RooStats/HistFactory
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Debugging and common problems

• The error message, through difficult to parse, gives you some hints about the problem

Here it shows which channel is giving you the negative PDF

Here it shows the value of all parameters where the PDF is negative
• If you encounter a problem like this, remember that you can open the workspace and work on the command 

line to explore and debug, set parameter values, evaluate pdfs, etc 
• If you’re up to the challenge, digging into the RooFit source code, adding more verbose print statements, 

and playing around can be very informative, and not as difficult as you might think!


