

ARIES-WP 17

Materials for extreme thermal management (PowerMat)

CERN, 5th of May 2017

M. Tomut and A. Bertarelli for PowerMat

PowerMat WP Objectives

- Optimization of carbide-graphite composite materials with respect to radiation hardness for LHC collimator system upgrade, exploring properties with new doping.
- Development of a carbon-based composite solutions for high power targets and beam dumps with improved resistance to short, intense pulse ion beam-driven shock waves.
- Testing and optimization and of diamond-metal matrix composites for applications as luminescence screens for high intensity beams (optimization will be performed as a function of beam-induced luminescence signal by changing diamond doping, to beam-induced shock resistance by using special light alloys and to diamond-matrix interface by using special additions).

PowerMat WP Description

Comprehensive and integrated R&D activity, including:

- Investigation, development, manufacturing, characterization, testing and integration of novel Ceramic Matrix and Metal Matrix Composites based on graphite and diamond reinforcements.
- Development of new experimental methods to test materials at energy density conditions relevant for accelerators beyond LHC (e.g.FCC) in more accessible experimental areas and producing less activation.
- Development of new monitoring techniques for online tests of radiation-induced material degradation.
- Simulating behavior of novel composites at very high strain rates.
- Exploring challenging and/or unconventional applications of such materials for high power accelerators and society.

PowerMat WP Innovations

- Online thermomechanical dynamic testing under high intensity beams.
- Study of ion-induced color centers in diamond for quantum computing applications.
- Prediction of radiation-induced microstructural damage and studies of methods to mitigate and cure such effects.
- Application to particle accelerator devices beyond collimators (e.g. novel luminescence screens for high intensity beams, beam windows, high power targets and beam catchers...).
- Exploration of demanding thermal management applications such high-end electronics, avionics, gas turbines, aerospace, advanced braking systems.

The WP is organized in the following tasks:

- Communication & Coordination

 (A. Bertarelli CERN, M. Tomut GSI)
- 2. Materials development and characterization (A. Bertarelli CERN)
- **3.** Dynamic testing and online monitoring (L. Peroni POLITO)
- 4. Simulation of irradiation effects and mitigation methods (A. Lechner – CERN)
- 5. Broader accelerator and societal applications (M. Tomut GSI)
- Within WP1 (Task 1.4) Industries for resistant materials (F. Carra– CERN)

	Laboratories	
1	CERN	Geneva, Switzerland
2	ELI-NP (Extreme Light Infrastructure – Nuclear Physics)	Bucharest-Magurele, Romania
3	GSI	Darmstadt, Germany
4	POLIMI	Milan, Italy
5	POLITO	Turin, Italy
6	UM	Malta
Х	NIMP (National Institute of Materials Physics)*	Bucharest, Romania
	Industries (in WP1 Innovation)	
Х	Brevetti Bizz	Verona, Italy
Х	RHP Technology	Seibersdorf, Austria
	* Participating as associated (subcontractor)	
A	RIES	

CERN in WP17 and WP14

CERN FLUKA team

- Expertise in simulating particlematter interactions and radiation effects
- Responsible for beam-induced shower studies for all CERN accelerators and future upgrades (e.g. HL-LHC)
- Coordination of ARIES Task 17.4

Acceleration of p to U²⁸⁺ from 1.4 to 11.6 MeV/u..

M-Branch In-situ and On-line Analysis of Irradiated Material

M1 Microscopy

University of Stuttgart University of Duisburg Essen

M2 X-Ray Diffraction

Helmholzzentrum Berlin / GSI

M3 Multi-Analysing Chamber

Universities of Darmstadt, Dresden Göttingen, Jena, Heidelberg

University of Malta

UNIVERSITY OF MALTA L-Università ta' Malta

- Highest research and teaching institution in Malta
- Track record of collaboration with CERN (EuCard2):
 - PhD, Marija Cauchi: 'Thermo-Mechanical Studies of Large Hadron Collider Collimators in Accident Scenarios', inermet blocks, collimator
 - MSc, Miryea Borg: 'Numerical Modelling and Experimental Testing of Novel Materials for LHC Collimators', new candidate materials Molybdenum Graphite, Copper Diamond, Carbon composites
 - MSc, Marcus Portelli (on-going): 'Preliminary Thermo-mechanical Design of a high-power absorber for HL-LHC Crystal Collimation', investigation on new crystal collimation designs
- Expertise:
 - Thermo-mechanical finite element analysis (FEA) simulations (ANSYS)
 - Analysis of high temperature (e.g. welding) induced stresses through full and reduced (computationally efficient) methods
 - Residual stresses hole drilling equipment
 - Sensor technology

• WP 17 Task 17.2

Main foreseen contribution: support for analysis for assessment of components performance, testing planning and validation

RHP-Technology @ ARIES

2 Technologies & many material compositions

3 different topics to work on

Metal-Diamond composite applications like novel **luminescence screens** for particle beams, quantum computing, florescence imaging,....

Demonstrate Additive Manufacturing of MgB2 for large dimensions (applications: novel beam pipes, RF cavities, ...)

Spark Plasma Sintering (SPS)

INDUCTION VACUUM HOT PRESSING 1500 C°

Mixed Powders

BREVETTI BIZZ

VACUUM SPS 1200°C VACUUM SPS >2600°C

Molybdenum carbide - Graphite material. Produced by SPS at >2600°C. Production of the absorber blocks for the HL-LHC TCSPM collimator prototype

Task 2: Materials development and characterization (A. Bertarelli – CERN)

- Research, investigation, development, manufacturing, characterization of novel CMC and MMC based on graphitic, carbide or diamond reinforcements. Continuous material optimization will be fostered by the feedbacks provided by tasks 3 and 4.
- Study and development of electrically conductive coatings, resisting the impact of high intensity particle beams.
- Characterization of thermophysical properties measurements, microstructural analysis (SEM, XRD, EDS ...), study of phases and of their change under various environments ...

Participants: CERN, GSI, NIMP, POLIMI, POLITO, UM, Brevetti Bizz, RHP Technology

Task 3: Dynamic testing and online monitoring (L. Peroni – POLITO)

Testing of material samples in a broad range of environments:

- Mechanical testing in quasi-static and dynamic conditions, at various temperatures
- Tests with high power beams (CERN,GSI, ELI-NP)
- Irradiation tests with online monitoring of properties evolution (GSI)
- Hydrodynamic simulations of experiments –constitutive models, spall strengths for new materials

Participants: CERN, ELI-NP, GSI, POLIMI, POLITO, UM

Task 4: Simulation of irradiation effects and mitigation methods (A. Lechner – CERN)

- Simulations on the degradation due to irradiation, ions (with ion tracks) and protons bombardment.
- Understand effect of time of energy deposition on damage and property degradation, taking into account dose rate and dynamical annealing effects for high intensity beams.
- Include effects of nuclear transmutations and gas production.

Participants: CERN, GSI, POLIMI

This task will contribute as well to an extra European collaboration (RaDIATE - Radiation Damage In Accelerator Target Environment), aimed at understanding the effects of radiation on material

Task 5: Broader accelerator and societal applications (M. Tomut – GSI)

This task will follow broader applications of new developed materials for highpower accelerators, space, society (energy, medicine, computing)

- Irradiation induced defect centers in diamond for luminescent screens, medical imaging and quantum computing.
- Novel materials for high power targets, beam catchers, beam windows.
- Applications for advanced engineering solutions, efficient energy solutions, space.
- Applications for thermal management.

Participants: CERN, GSI, UM, Brevetti Bizz, RHP Technology

- Task 17.2) Comparative compendium of the developed materials [month 40]
- Task 17.4) Report on simulations on irradiation effects [month 44]
- Task 17.3) Irradiation test results: Beam impact on new material and composite [month 48]
- Task 1.4) Production of material samples (as large as possible for each industry to demonstrate workability) [month 24]

Milestones

Milestone number ¹⁸	Milestone title	WP number ⁹	Lead beneficiary	Due Date (in months) ¹⁷	Means of verification
MS58	Organisation of PowerMat kick-off meeting (Task 17.1)	WP17	1 - CERN	6	Agenda, summary report
MS59	Irradiation campaigns at GSI for radiation hardness studies (Task 17.3)	WP17	23 - POLITO	27	Report to StCom
MS60	Irradiation effects analysis (Task 17.3)	WP17	1 - CERN	36	Report to StCom
MS61	Comparative compendium of materials developed (Task 17.2)	WP17	1 - CERN	40	Report to StCom
MS62	Dissemination of R&D results on novel materials for accelerator and societal applications (Task 17.5)	WP17	12 - GSI	46	Report to StCom

Deliverable Number ¹⁴	Deliverable Title	Lead beneficiary	Type ¹⁵	Dissemination level ¹⁶	Due Date (in months) ¹⁷
D17.1	Material characterization	1 - CERN	Report	Public	12
D17.2	Irradiation effect simulations	1 - CERN	Report	Public	44
D17.3	Irradiation test results	23 - POLITO	Report	Public	46

Task	Year 1					Yea	ir 2			Yea	ar 3		Year 4										
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4							
17.1		Μ																					
17.2				D										Μ									
17.3									Μ			Μ				D							
17.4														D									
17.5																Μ							
1.4								D															

		_	_	-	_	_				_		_	_	_	_	-		_		-			
17	Materials for extreme thermal management (PowerMat)																						
17.1	Coordination and Communication		М																				
17.2	2 Materials development and characterization				D													М					
17.3	B Dynamic testing and online monitoring									I	М				М						D		
17.4	Simulation of irradiation effects and mitigation method																			D			
17.5	5 Broader accelerator and societal application																				N		
18	Very High Gradient Acceleration Techniques (VHGAT)																						

