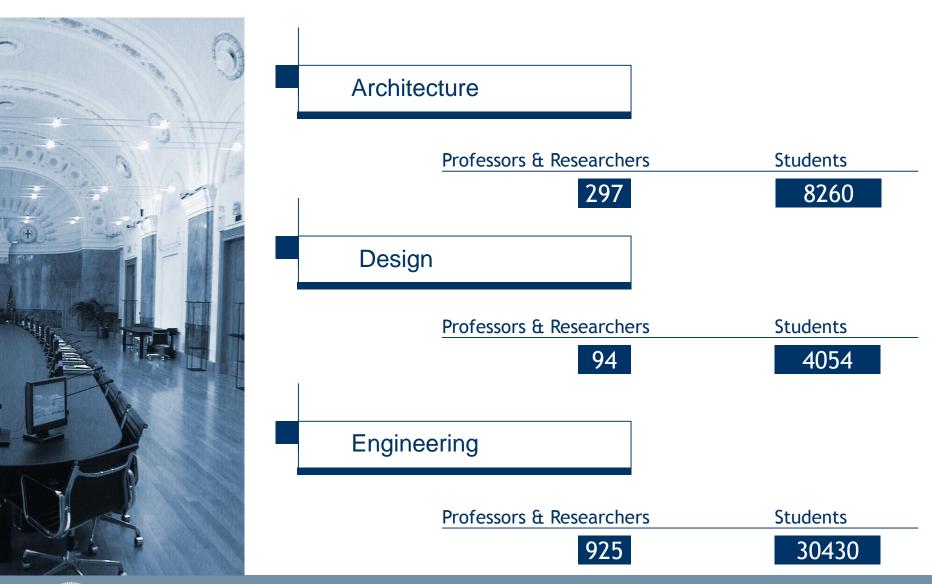




**MILANO 1863** 


ARIES Project
Work Package 17



Kick-off meeting, Geneva, May 5, 2017

Marco G. Beghi

## Faculty & Students - Academic Year 2015/2016





## **Human Resources, Academic year 2015/2016**



| Professors and<br>Assistant Professors | 1316  |
|----------------------------------------|-------|
| Technical and Administrative staff     | 1207  |
| PhD students                           | 1122  |
| Students                               | 41622 |

## **The Energy Department**

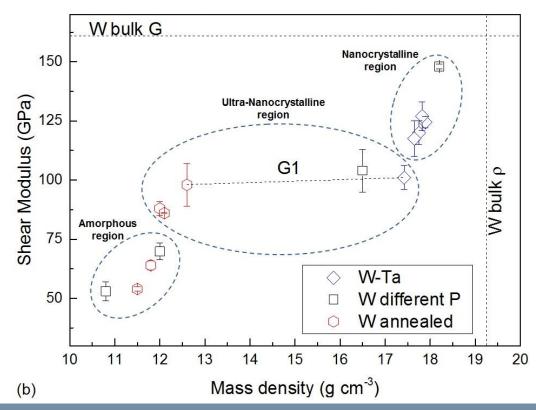
The present Energy Department (<a href="www.energia.polimi.it">www.energia.polimi.it</a>):

- founded in 2008, merging former Departments, including the Nuclear Engineering Dept..
- owns all the major expertise in nuclear engineering
- Organized in 5 Sections:
  - Machines, propulsion and energy systems
  - Thermal engineering and environmental technologies
  - Electrical engineering
  - Nuclear engineering
  - Chemical technologies and nanotechnologies

## The Micro- and Nano-structured Materials Laboratory

- The former Materials Laboratory had a strong tradition in
  - Condensed Matter Physics
  - materials behaviour, including deformation mechanisms
    - thermophysical properties
- It evolved into the Micro- and Nano-structured Materials Laboratory (<u>www.nanolab.polimi.it</u>) pushing its research towards
  - nanotechnology
  - thin films and functionalized surfaces
  - energy applications: photovoltaics
    - photochemical water splitting

## The Micro- and Nano-structured Materials Laboratory


- 2 full professors, 4 associate professors, 1 assistant professor
- 4 post-docs, 4 PhD students, several master's thesis students
- several courses offered, at B.S., M.S., PhD levels, mainly to Nuclear Eng.ng and Materials Eng.ng students: Introduction to Nanotechnology, Atomic Physics, Solid State Physics, Nuclear Physics, Plasma Physics, Physics of Disordered Materials, Nanomaterials for Energy Conversion, Physics of Nuclear Materials
- Thin film production by Physical Vapour Deposition (PVD) techniques (Pulsed Laser Ablation, PLD)
- Characterization by:
  - Raman spectroscopy
  - Brillouin spectroscopy
  - SEM with EDX
  - AFM
  - Scanning Tunneling Microscopy (STM) Spectroscopy (STS)

## Recent research by Marco G. Beghi

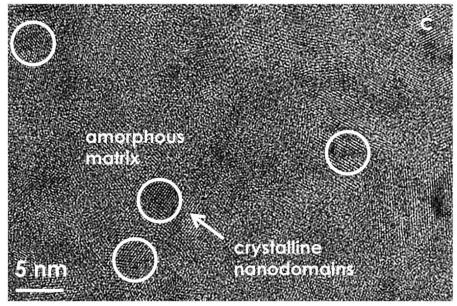
Full characterization of the elastic properties of thin films by non-contact acoustic methods (Brillouin spectroscopy).

E. Besozzi, D. Dellasega, A. Pezzoli, C. Conti, M. Passoni, M.G. Beghi, Amorphous, ultra-nano- and nano-crystalline tungsten-based coatings grown by Pulsed Laser Deposition: mechanical characterization by Surface Brillouin Spectroscopy Materials and Design **106**, 14-21 (2016)

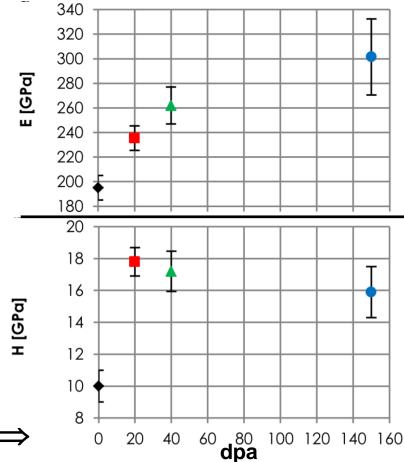
W and W-Ta films (thickness: 200 nm  $\div$  2  $\mu$ m) deposited by laser ablation, with different microstructures (amorphous, ultra-nano crystalline, and nano-crystalline)



## Recent research by Marco G. Beghi


in collaboration with Italian Institute of Technology:

### Development of corrosion and irradiation resistant films


F. García Ferré, A. Mairov, L. Ceseracciu, Y. Serruys, P. Trocellier, C. Baumier, O. Kaïtasov, R. Brescia, D. Gastaldi, P. Vena, M. G. Beghi, L. Beck, K. Sridharan, F. Di Fonzo,

Radiation endurance in Al<sub>2</sub>O<sub>3</sub> nanoceramics Scientific Reports, **6**:33478 (2016)

1.3  $\mu$ m thick Al<sub>2</sub>O<sub>3</sub> films deposited by laser ablation



12 MeV  $Au^{5+} + 18 MeV W^{8+} =$ 



## **Ongoing research**

Optical profilometry for the measurement of the thermal expansion coefficient of thin films

new measurement system, built in-house, is beginning to operate

Modeling of the temperature and strain fields (waves) induced by laser pulses, also in multilayers

Numerical model implemented, exploitation to analyze laser pulses on tungsten has begun

Marco Beghi has been academic supervisor of the doctoral theses of Nicola Mariani and Elena Quaranta

#### Possible contributions to WP 17

## Task 17.2: Materials development and characterization

- Research, investigation, development and characterization of novel CMC and MMC based on graphitic, carbide or diamond reinforcements and dopants (in collaboration with Task 14.4).
  - measurement of the elastic properties by Brillouin spectroscopy
  - analysis of the structure of carbonaceous materials by Raman spectroscopy
- Study and development of electrically conductive coatings, resisting the impact of high intensity particle beams.
- Characterization of thermophysical and outgassing properties, microstructural analyses, study of phases and of their change under various environments ...

measurement of the thermal expansion coefficient of supported layers

### Possible contributions to WP 17

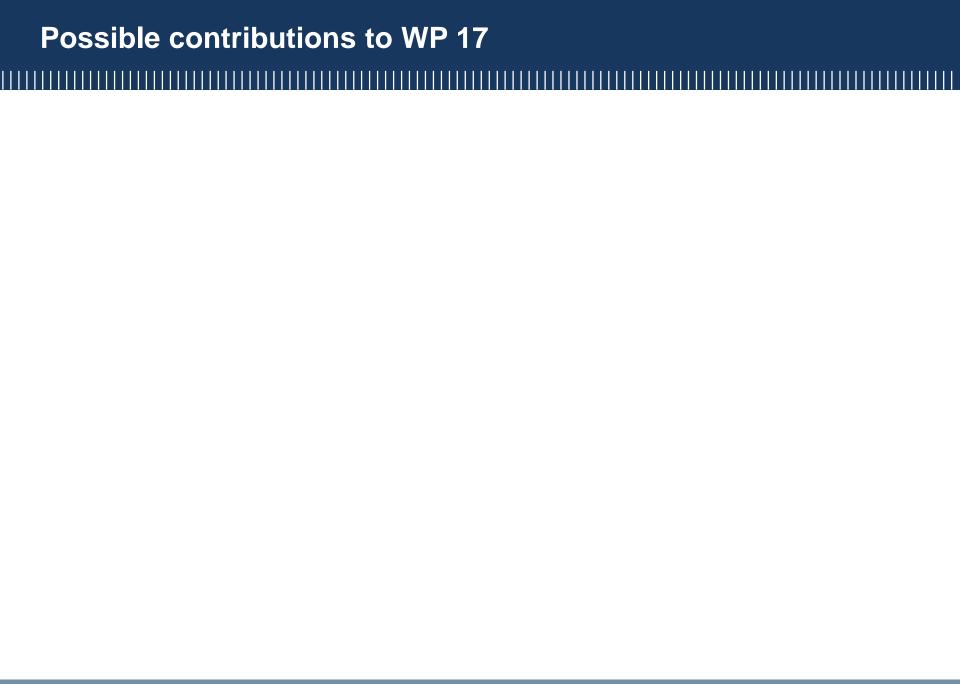
## Task 17.3: Dynamic testing and online monitoring

Testing of material samples in a broad range of environments:

- Mechanical testing in quasi-static and dynamic conditions, at various temperatures
- Tests under very high power laser beams
  - modeling of the temperature and strain fields and waves induced by laser pulses, also in multilayers
- Irradiation tests with online monitoring of properties evolution
  - contribution to the design of irradiation tests and to the estimation of primary damage
- Hydrodynamic simulations of experiments Equations of State,
   Spall Strengths for new materials

### Possible contributions to WP 17

## Task 17.4: Simulation of irradiation effects and mitigation methods


- Investigation and simulations of material damage induced by irradiation with protons and ions at various energies and doses
- Quantify Displacement per atom (DPA), gas production, nuclear transmutations for equipment in complex accelerator environments and provide a relationship with radiation experiments at lower energies and/or different particle species
- Ideally, relate radiation damage quantities (e.g. DPA) with change of relevant macroscopic material properties
- Open to co-operation with other international collaborations such as RaDIATE – (Radiation Damage In Accelerator Target Environment)

guidance of a doctoral thesis aiming at monitoring and characterizing the evolution of properties of materials, and at modeling it, in relation to the primary damage

## **Apologies**

## My train is at 18.39, from Cornavin

- I must leave shortly after 17.30
- I will miss tonight's dinner



# QS World University Rankings by Faculty - Engineering and Technology 2017

|                          | World | EU | Italy |
|--------------------------|-------|----|-------|
| Engineering & Technology | 24    | 7  | 1     |

| Politecnico di Milano                                                                                    | Score | World<br>Rank |
|----------------------------------------------------------------------------------------------------------|-------|---------------|
| Academic Reputation (40%)                                                                                | 86,4  | 32            |
| Employer Reputation (30%)                                                                                | 88,4  | 12            |
| Citations per Paper Measures productivity for the last five years (15%)                                  | 79.4  | 301           |
| H-index Citations (15%) Measures both the number of papers produced and the impact of the published work | 81,2  | 87            |
| Overall                                                                                                  | 83.7  | 24            |



# QS World University Rankings by Subject 2017

|                                                      | World | EU | Italy |
|------------------------------------------------------|-------|----|-------|
| Architecture & Built Environment                     | 14    | 6  | 1     |
| Art & Design                                         | 7     | 3  | 1     |
| Computer Science & Information Systems               | 49    | 10 | 1     |
| Chemical Engineering                                 | 100   | 22 | 2     |
| Civil & Structural Engineering                       | 14    | 6  | 1     |
| Electrical & Electronic Engineering                  | 50    | 10 | 1     |
| Mechanical, Aeronautical & Manufacturing Engineering | 29    | 7  | 1     |
| Materials Science                                    | 70    | 15 | 1     |
| Mathematics                                          | 78    | 23 | 1     |
| Business & Management Studies                        | 88    | 29 | 2     |
| Physics & Astronomy                                  | 123   | 54 | 5     |

# Best European universities in Engineering/Technology according to Employer evaluation (QS 2017) - 1

|    | Architecture & Built Environment | Art & Design               | Computer Science           | Chemical<br>Engineering         | Civil & Structural<br>Engineering |
|----|----------------------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|
| 1  | Cambridge                        | Oxford                     | Cambridge                  | Cambridge                       | Cambridge                         |
| 2  | MSA<br>Manchester                | Royal College of Art       | Oxford                     | Oxford                          | Oxford                            |
| 3  | Politecnico di Milano            | Politecnico di Milano      | Lomonosov<br>Moscow        | Imperial College<br>London      | Imperial College<br>London        |
| 4  | TU Delft                         | Goldsmiths<br>London       | CentraleSupélec            | ETH<br>Zurich                   | Politecnico di Milano             |
| 5  | RWTH<br>Aachen                   | Kingston University London | LSE<br>London              | TU Delft                        | TU Delft                          |
| 6  | Lund University                  | Edinburgh                  | Imperial College<br>London | Novosibirsk                     | ETH<br>Zurich                     |
| 7  | UPC<br>Barcelona                 | UCM<br>Madrid              | ETH<br>Zurich              | RWTH<br>Aachen                  | CentraleSupélec                   |
| 8  | Edinburgh                        | Politecnico di Torino      | Bauman<br>Moscow           | Manchester                      | RWTH<br>Aachen                    |
| 9  | UCL<br>London                    | ITU<br>Copenhagen          | Politecnico di Milano      | TU Munich Politecnico di Milano | TU Munich                         |
| 10 | Salford                          | TU Berlin                  | Novosibirsk                |                                 | Politecnico di Torino             |

# Best European universities in Engineering/Technology according to Employer evaluation (QS 2017) - 2

|    | Electrical &<br>Electronic<br>Engineering | Material Sciences                | Mechanical<br>Engineering  | Environmental<br>Sciences  | Mineral & Mining<br>Engineering |
|----|-------------------------------------------|----------------------------------|----------------------------|----------------------------|---------------------------------|
| 1  | Cambridge                                 | Oxford                           | Cambridge                  | Cambridge                  | Cambridge                       |
| 2  | Oxford                                    | Cambridge                        | Oxford                     | Oxford                     | Oxford                          |
| 3  | Imperial College<br>London                | EPFL<br>Lausanne                 | Imperial College<br>London | Imperial College<br>London | LSE<br>London                   |
| 4  | ETH<br>Zurich                             | Imperial College<br>London       | Lomonosov<br>Moscow        | ETH<br>Zurich              | Politecnico di Milano           |
| 5  | Bauman<br>Moscow                          | Politecnico di Milano            | Bauman<br>Moscow           | Lomonosov<br>Moscow        | Imperial College<br>London      |
| 6  | CentraleSupélec                           | Lomonosov<br>Moscow              | ETH<br>Zurich              | RWTH<br>Aachen             | ETH<br>Zurich                   |
| 7  | Politecnico di Milano                     | CentraleSupélec                  | CentraleSupélec            | Manchester                 | RWTH<br>Aachen                  |
| 8  | TU Munich                                 | UPM<br>Madrid                    | RWTH<br>Aachen             | Politecnico di Milano      | King's College<br>London        |
| 9  | MIPT / Phystech<br>Moscow                 | University College Dublin        | Politecnico di Milano      | EPFL<br>Lausanne           | Lomonosov<br>Moscow             |
| 10 | RWTH<br>Aachen                            | Ecole Polytechnique<br>Palaiseau | TU Delft                   | UCL<br>London              | University College Dublin       |

## **ARWU Ranking in Engineering and Technology 2015**

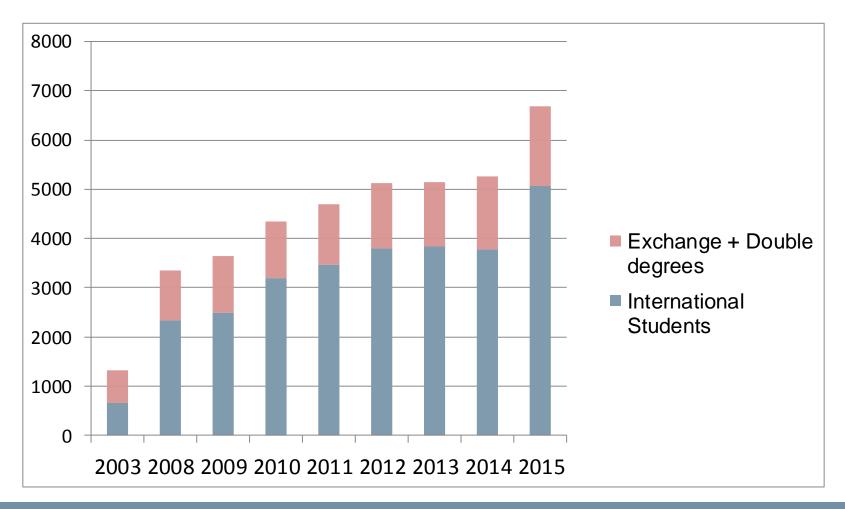
**ARWU** (Academic Ranking of World Universities) ranks the Politecnico di Milano 92<sup>nd</sup> on a World scale

| Italy | Europe | World |  |
|-------|--------|-------|--|
| 1     | 17     | 92    |  |

## Wharton-QS Stars Awards 2014 - Reimagine Education

A panel of international judges has voted Polimi as the best of the 43 universities worldwide participating in the Nurturing Employability category. Nurturing Employability Award:

| Winner    | Enhancing Engineering Education for 21st Century Employability                | Politecnico di Milano               | Italy     |
|-----------|-------------------------------------------------------------------------------|-------------------------------------|-----------|
| Runner up | Accelerating Medical Innovation and Careers: MILI Global Valuation Laboratory | University of<br>Minnesota          | USA       |
| 3rd place | The HealthFusion Team Challenge; Building Stronger Healthcare                 | Queensland University of Technology | Australia |

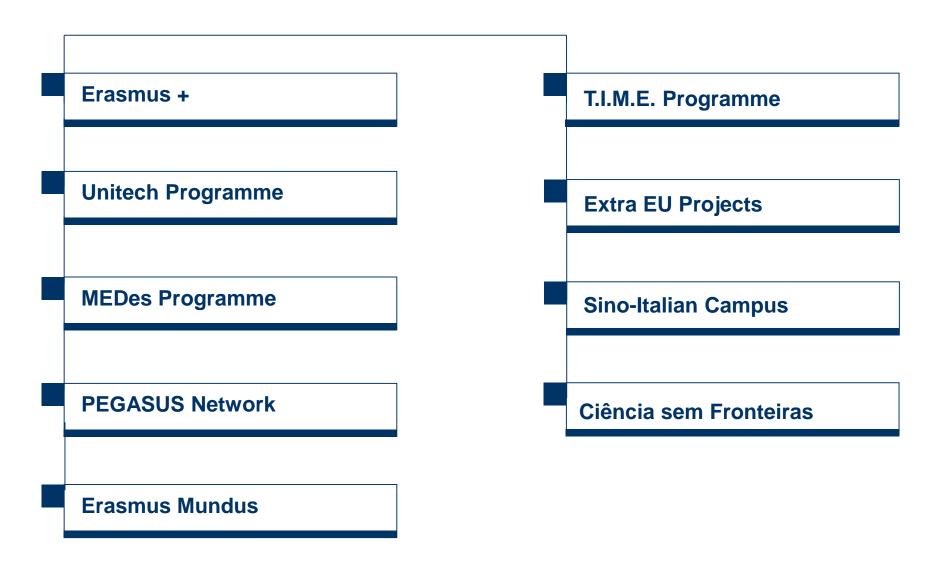

# Politecnico di Milano: internationalisation A.Y. 2015/2016

International students coming from more than 100 countries

- 1497 at BSc (6%)
- 3228 at MSc (21%)
- 343 PhD (31%)

Specializing Master and Short post-graduation courses More than 2500 students (20% from foreign countries)

## The growth of international students




## International Co-operation Agreements Effective in December 2015 – Total: 949



| PhD Cooperation and mobility agreements           |     |
|---------------------------------------------------|-----|
|                                                   | 44  |
| Double degree agreements                          |     |
|                                                   | 94  |
| Student exchange agreements with EU partners      |     |
|                                                   | 432 |
| Students exchange agreements with non-EU partners |     |
|                                                   | 209 |
| Framework agreements                              |     |
|                                                   | 170 |

## **Exchange Programmes AY 2015/16**



## **Exchange Programmes AY 2015/16**





## Strategic partnerships: IDEA LEAGUE

#### Since March 2016

Strategic Network with 4 of the best TU in Europe









#### MEMBER OF

# **IDEA** League

A focused network of leading European universities of science and technology

#### **Initiatives:**

Summer Schools, PhD Schools, Challenge Programme, Research Grants, etc.

## Strategic partnerships: ALLIANCE4TECH

Strategic Network with CentraleSupelec TU-Berlin University College London



Objective: creating a European Campus without borders, for students and professors.

Opportunity to study in at least 3 different campuses for: Management Engineering Mechanical Engineering

Agreement in Computer Science under negotiation

