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Challenges with the 2016/04-05 data
Due to the loss of M1D and the absence of M2D in the 2016/04-05 data:

— Low transmission through the cooling channel
— Beam nonlinearities, particularly in TKD
Dealing with low transmission:

— Select a narrow beam upstream that is efficiently transported, good
option to study the material but unlikely to yield cooling

— Focus on the core density increase by means of fractional emittance
of phase-space volume estimation rather than 4D RMS emittance

Dealing with nonlinearites:
— Focus on the linear core rather than include the tails

— Use non-parametric density estimation techniques, calculate the
volume of phase-space probability contours
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Categories of phase-space presented

o Toy Monte Carlo
- Takes any input distribution (z,y, pz, py, =) (see A)
- Deterministic Bethe-Bloch energy loss for given Toy absorber
- Gaussian scattering N'(0,6p), 6y = 135 /2/Xy(1 + 0.038 In(x/Xy))

pcl3
- Measures the beam directly “downstream” of the absorber

o MAUS Monte Carlo Simulation

- Generates beam of input normalised emittance ¢; and momentum p;
inside the upstream solenoid, given the field

- Passes through the simulated TKU and TKD stations, the MICE
absorber (LiH currently) and a virtual plane every 5cm.

- Standard physics processes

o MICE Data

- Beam sampled in the hall at every TKU and TKD stations

- Particle species selection currently using TOF01

- No transmission selection in the analyses, but 140 + 5 MeV/c input

- 2016/04 setting 1.2 as a test case (10 mm-140 MeV/c, 880 mm S,)
— 8645, 8653, 8677, 8680, 8683, 8685, 8687, 9689, 8691, 8692, 8693 (462k @TOF2)
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Normalised RMS transverse emittance
4D normalised RMS emittance:

1
en=—VD (6} JR—

with D the determinant of the covariance ma-
trix defined as

Ozxx Oxp, Ozy  Ouzp,y

D = det | 7pex papz Tpey  Opapy ()
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with 0,3 the covariance of o and §3, i.e.
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Emittance evolution in Step IV 2016/04 setting 1.2

In this case, only the the particles that make it through at selected:

o The RMS emittance reduction across the absorber is far greater than
what is expected (~7-8%) across the absorber

o Major non-linearities in the DS tracker, to such an extent in data that
is drowns the cooling signal entirely (no p spread in this MC)

— Transmission loss bias and non-linear transport
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Bias caused by transmission loss

Large R rejection
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Alternatives to RMS emittance

For large input beams, that cool significantly in the MICE channel, the low
transmission and the drift space between the FC and TKD introduces a
large bias on RMS emittance, even for a beam selected downstream.

All hope is not lost, however, as what must be shown is an increase in
phase-space density going through the absorber. Two options:
o Single-particle amplitude approach

— Still uses the covariance matrix X as a metric

— Assumes a somewhat Gaussian core

— Allows to select low amplitude, i.e. high density regions
— Relates very easily to RMS emittance

o Density estimation approach

— Find a reliable estimator of the density in the 4D phase-space

— Compute the volume occupied by a constant fraction « of the particles
— A reduction in volume signifies an increase in density

— Can be related to RMS emittance
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Transverse single-particle amplitude

The transverse amplitude is defined as:
A= enulTE*lui (4)

with ¥ the covariance matrix and u; the phase-space column vector of the
ith particle. The u; are centred so that u; o = o — («). For a gaussian
beam, the amplitudes are distributed as a x? distribution with 4 degrees of
freedom. Its mean is (A1) = €,(x?) = 4ep.

Mahalancbis Distance Value

The amplitude gives a definition of a weight f| =
to select any given fraction « of the beam,
rejecting the tails if need be. It is analogous
to the squared Mahalanobis distance, d?,
scaled by the emittance, ¢,.
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Amplitude distributions in Step IV 2016/04 setting 1.2

Transverse amplitude (true)
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Using amplitudes to produce a subsample

The method to produce an a-subsample is as follows:
@ calculate the amplitudes, Aj_, i=1,...,N, of every particle;

@ find a limit A9 so that the sample of all particles that verify
A < A9 represents a fraction ar of the entire population;

© re-evaluate the covariance matrix X on the reduced sample;
© repeat 1., 2. and 3. until we get convergence on the sample.

— The RMS emittance of the subsample is the subsample emittance
— The volume occupied by the subsample fractional emittance
— Must select the same amount of particles up and downstream
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Consequence of a subsample selection

Selecting a sample amplitude-wise out of the x? distribution is equivalent
to truncating the original distribution. It does not artificially increase the
core density. For a fractional «, the cut-off is

V2, L/20) =a — L/2,=-W (O‘ - 1) ~1, (5)

e

with W (-), the product log function. This means that the expected
subsample fractional change is

Lo — Ly _ 26F(a) —26,F(e) | eq—ey _ (ADr—(Al)r
Li, N 2¢l F(«) el B (A)r
_ €2 — ¢l (6) _ iG(a) 1
e | €, G(a)
€ — €
= ‘ 7
@
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Fractional emittance calculation

An alternative method to using the subsample emittance e, as an FOM is
to use the volume occupied by the selected particles instead, i.e. the
fractional emittance. This can be done at any dimension by calculating
the volume of the convex hull of the subset of points.

The convex hull or convex envelope of a set X of points in the Euclidean
space is the smallest convex set that contains X . For instance, when X is
a bounded subset of the plane, the convex hull may be visualized as the
shape enclosed by a rubber membrane stretched around X .
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Probability content of an n-RMS ellipsoid

An n-RMS ellipsoid is an ensemble of points £ in n dimensions that satisfy
xT371x < 1. The integral of the corresponding n-Gaussian over the
entire ellipse £ is, for an arbitrary scaled radius,

R? n 2
pixee)= | xi<r>dr=7(r/§;f2)/2) (8)

with y(n,r) the lower incomplete Euler Gamma function.

This yields radically different probability contents at different dimensions

n 1 2 3 4
Va 2(me,)?R | mme, R gw(men)g 2R3 | Sm?(me,)*RY
p(xef) 68.27 % 39.35% 19.87% 9.02%
erf(1/v/2) 1—% erf(1/v2) — /2 1_2\3/5

Given a volume measurement, the RMS emittance of a Gaussian beam is

EEDIAK

€En =
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Toy analysis of fractional quantities Toy

A thorough Toy analysis (Gaus) of the fractional quantities showed:

o The same relative change is seen in the RMS emittance and all of
the fractional quantities, for any fraction

o The change in fractional quantities exhibit the same relation with
B1 and the input emittance, ¢;

o The fractional quantities are more robust against non-linearities as
the tails do not influence their measurement
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Fractional quantities in Step IV 2016/04 setting 1.2
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Phase-space density estimation

Amplitude methods work well for beams with a Gaussian core, so they are
restricted to a small fraction of a non-linear beam (statistical limitation)

The volume of the phase-space is computed using the convex hull, which
is a bad approximation for concave sets, i.e. non-Gaussian contours.

When using an estimator, there are three critical requirements
o Consistency: for large NN, the estimator must converge to the true
value that is estimated, lim 6, = 6;
n——+0oo

o Unbiasedness: the estimator must converge to the true value

isotropically in the parameter space, E(0) = 0,

o Robustness: the estimator must return good results regardless of the
true parent distribution it is estimating.

Deviation from the true estimated distribution can be quantified by
computing the Mean Integrated Squared Error (MISE).
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Systematic studies highlights

MISE

Mean integrated squared error
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Contour estimation (4D Gaussian)

2015
- Sh e
- gaus4, bin g bin
s
s -
0 F=1 gaus4, knn knn
0.
o~
- e H |
I Nl i : |
~a —
~_
. .- -
-0.
-01sf-
10° 10 10° N 10° 10 10°
Volume (4D G 10k, kNN, 50%) Contour estimation convergence
bias
Entries 100 g F
Mean -0.008346 .05
o RMS. 00234 % H
E 4 X2/ ndf 209/9 H g
18 Constant 16.09 +2.11 oy \J —
e Mean  -0.007631+ 0.002629 n h ¥ b
£ Sigma 0.02463 + 0.00230 o,
14F- 00514~ 1 A
E Ho~1 A
12f E &
10—
E x &
8 n ==
E C = =g
== 0. ==kr
E = ==K
E L = =ge
4 [ SR o
E £ ==k
2 -0z ==
= ot S I A AU AN I P L L o I il N A |
%1 008 006 -004 002 0 002 004 006 008 01 0 o I
@vv
Francois Drielsma (UniGe) Transverse phase-space evolution May 4, 2017

17 / 37



Phase-space evolution in a Gaussian world Toy

Xp, profile at TKD S5

DE applied to toy MC:

g 80; 0.14
o DE of a 4D Gaussian before = oo
and after absorber N3
o Find contour level, p,, given o F
o Measure the phase-space o oot
volume for which p(z) > p. o
710‘9360 -300 -200 -100 0 100 200 300 400
o Equivalent to A selection i)
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Phase-space evolution in Step IV 2016/04 setting 1.2

DE applied to MAUS MC and data:

o DE of a simulated phase-space
in TKD station 5

o Find contour level, p,, given a

o Measure the phase-space
volume for which p(z) > p.

o Use MC to compute volume
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Alternate contour volume calculation: a-complices

Convexe hulls work after amplitude selec-
tion because ¥ has a convexe (L?) sym-
metry around the mean.

They cannot be used in the general case, +
as they drown underlying asymmetries of °%
the distribution. Two options

o Compute the volume with MC £

o Extend the concept to a-shapes “LoE

An a-complex is a set of n-simplices tes- -2gpbrmlomhdinbonlobind o)
sellating the points that verify R < 1/«
R the circumradius of the simplex. One
can fix the scale of the features in the

distribution and get the right volume. 1H l g; E E

Using INN approximation, one expects
R ~ (Np.)~/" for a contour level p..
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Conclusions

Status of the amplitude-based analysis:

o Selecting the core amplitude-wise gets rid of artificial cooling due
to scraping and artificial growth due to non-linearities

o The toy MC shows that the exact same trends are observed for the
subsample and fractional emittance as for the RMS definition.

o Method shows a clear cooling signal in both MC and data, a proper
MC is needed.

Status of the density estimation analysis:

o Systematic study under way, kNN promising in 4D, low MISE and
no bias for large samples with the rule-of-thumb k selection.

o Method applied to the Toy to study its behaviour, must check for
more input distribution shapes in 4D

o Method also shows cooling signal in simulation and data, need more
thorough analysis, currently not as reliable as A| method
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A. Density estimators
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Optimal binning
Multiple ways to optimize the binning for density estimation
o Scott's rule, minimizes ISE for Gaussian distributions (bad)
o Minimize the ISE of a “leave-one-out” estimator for constant binning,
i.e. minimize J = (M_Qm — MQf‘]{;_ll)A > NP
o Maximize the “jackknife” likelihood, i.e. minimize the information

(-InL)withInL =", N;In <A

N;
[> ok (Ne+1)—1]

An n-linear interpolation is used between the bin centres
1D Cauchy distribution 2D 2-peak Gaussian distribution

ISE: 0.000009

>

—— CRE(60%): 0.3137%

N

°
NI L R U R N N B

|
&
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k-Nearest Neighbours

For a given point x, find the k closest points in the input cloud, find the
distance Ry, to the k** point and compute the local density as
k ET (2 +1
pla) = o - D)

Vn 2 RZ’

with V), the volume of the n-sphere centred in Z of radius Ry.

(10)

Several ways to optimize k
o Rule of thumb, simply fix &k = VN
o Minimize the information criterion (AIC, BIC)

1D Cauchy distribution 2D 2-peak Gaussian distribution
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Tessellation Density Estimation (TDE)

For a given point set, find the Voronoi tessellation of the space. The
density in each of the Voronoi cell is simply

pi=V;t (11)

with V; the volume of the j'h cell. It is analogous to INN. One can either
find the closest cell and use p; or use Delaunay interpolation.

— Unbiased estimator but extremely large variance

— Must find ways to reduce variance to make it practical
1D Cauchy distribution 2D 2-peak Gaussian distribution
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Penalised Bootstrap Aggregate TDE (PBATDE)

One way to reduce variance is to resample the N points into M (~ 1000)
tessellated sets of J points (bootstrapping) and compute

J
1 -1
@) == Vi (12)
j=1
with V; the volume of the k'™ cell of the subset ;.

— Still unbiased, variance reduced by bootstrapping
— Minimize the information criterion (AIC, BIC), penalises complexity .J

1D Cauchy distribution 2D 2-peak Gaussian distribution
E r 0.08
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B. Theoretical functions
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Uniform distribution

Probability density function:

n

1

Xoetton 2= pr g g G

Volume occupied by a fraction « of the population:

2D Uniform distribution

The a-probability contour:
— mn-orthotope centred in p
— Side lengths are the al;
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Gaussian distribution

Probability density function:

1
X~ NS = ———exp—(z— p)TS Hx — p)/2
(1, %) R p[—(x—p) (x — p)/2]

Volume occupied by a fraction « of the population:

— First find R? so that P (%, %2) = «, P the NLI I" function
1
m2|X|2
YV=——_"R"
reg+1)

2D Gaussian distribution

The a-probability contour:
— n-ellipsoid centred in u

— Diagonalize ¥ = UTAU, axes
radii are the v A\;R

— Angles are ratios between the

&
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©
N

A b b Lo LN e s w
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hs

F

F

eigenvector components, Uiz
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Exponential distribution

Probability density function:

X ~E(p, A H/\ exp [—Z)\i|$i_ﬂi’] ;
i=1

it is the L! extension of the 1D exponential distribution.
Volume occupied by a fraction « of the population:
— First find R so that v(n, R) = «, 7 the LI T function

2
V=—=—R"
[Tz A
2D Exponential distribution

The a-probability contour: i3
— n-rhombus centred in p 3
— Axes half-lengths are the R/\; E
— L' symmetry :

I L L I | I | | I
5 -4 3 -2 -1 0 1 2 3 4
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Triangular distribution

Probability density function:

n

n+1 =
X ~T(p,A) = ||)\z <1— > )\i|xi_ﬂi’>a (19)
=1 =1

it is the L' extension of the 1D triangular distribution.
Volume occupied by a fraction « of the population:
— First find R so that R"[(n + 1) — nR] = «, then
2

Y=———R" (20)
Hi:l Ai

2D Triangular distribution

The a-probability contour: T )
— n-rhombus centred in u oof .
— Axes half-lengths are R/\; g e

— L' symmetry i
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Frangois Drielsma (UniGe) Transverse phase-space evolution May 4, 2017 31 /37



Maxwell-Boltzmann distribution

Probability density function:
1
X o M(p,B) = ————z'zexp [-2" /2], (21)
n(2m)z|X|2
with 272z = (£ — ) TS~ (x — p). It is the L? extension.
Volume occupied by a fraction « of the population:
— Numerically optimize inner (1) and outer (R) radii of content «, then
n 1
w2 |X|2

“Fag (22)

2D Maxwell distribution

The a-probability contour:

— Two concentric n-ellipsoid
centred in p

— Inner and outer radii are r and R

— L? symmetry
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Cauchy distribution

Probability density function:

X~ Clpo)y= L1 (23)

" 1 (52
this definition cannot be extended to higher dimensions as it wouldn’t be
normalisable on R? and above.

Volume occupied by a fraction « of the population:

YV = 20 tan (?) (24)

1D Cauchy distribution
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Chi-squared distribution

Probability density function:

X ~y2 = n;:v%_le_xﬂ, 25
Xn = Jrp B (25)
it has a mean and variance of n and a maximum at x =n — 2 if n > 2.
Volume occupied by a fraction « of the population:
— Find r, R so that P (%, %) — P (%,%) = a, P the NLI I function:
V=R-r (26)

1D x? distribution (4 DoF)
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C. Linear transport
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Drift space

At first order, in a drift space, the 4 transverse coordinates evolve as

x 1 L/p, 0 0 x

Pz 0 1 0 0 Pz
N 27
y 0 0 1 L/p. y (27)

Dy 0 0 0 1 Dy

M
The covariance matrix transforms as

Y= MEM! (28)

and, as the transfer matrix has det M = 1, the emittance is left unchanged
after a drift.
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Solenoid field

At first order, in a solenoid field, the 4 transverse coordinates evolve as

x cos(d)  +sin(f) 0 0 x
Da —Ksin(d)  cos(6) 0 0 Dz
Yy - 0 0 cos(d)  +sin(0) Yy (29)
Dy 0 0 —Ksin(f) cos(0) Dy

with 8 = KL and K = ngpo, where By is the longitudinal field inside the

solenoid and (Bpy) is the magnetic rigidity of the central trajectory.
The covariance matrix transforms as

Y — MEM! (30)

and, as the transfer matrix has det M = 1, the emittance is left unchanged
after going through a solenoid.
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