– Torsten Dahms – Excellence Cluster Universe - Technische Universität München (on behalf of the ALICE Collaboration)

Hard Probes 2018 October 1st, 2018

ALICE Overview

Outline

Electromagnetic Probes

- Iow mass dielectrons
- photons

• Jets

- γ-jet correlations
- jet quenching & structure

Heavy Flavour

- heavy-flavour jets
- baryons
- directed flow

Quarkonia

- new pp reference
- ► flow
- in small systems

• Electromagnetic Probes

- Iow mass dielectrons
- photons

• Jets

- γ-jet correlations
- jet quenching & structure

• Heavy Flavour

- heavy-flavour jets
- baryons
- directed flow

Quarkonia

- new pp reference
- ► flow
- in small systems

Torsten Dahms – Hard Probes 2018

ALICE Data

System	Year	√s _{NN} (TeV)	
Pb–Pb	2010–2011	2.76	
	2015	5.02	~
	upcoming: 2018	5.02	~
Xe–Xe	2017	5.44	•
p–Pb	2013	5.02	
	2016	5.02, 8.16	~3 n
pp	2000 2012	0.9, 2.76	~200 µ
	2009-2013	7, 8	~1.5 p
	2015, 2017	5.02	•
	2015-2018	13	

- LHC Run-2 nearing completion
- One month from now: last Pb–Pb campaign of Run 2, aiming at total $L_{int} \sim 1 \text{ nb}^{-1}$
- Significant detector upgrades during LS2

Torsten Dahms – Hard Probes 2018

• Last year: sizeable pp reference sample at $\sqrt{s} = 5$ TeV \rightarrow improved R_{AA} for hard probes

•ـــــ	
_	

Electromagnetic Probes

Low-Mass Dielectrons

- Emitted from all stages of the collisions w/o strong final-state interactions
 - search for signals of thermal radiation and chiralsymmetry restoration (p modification)
 - hidden behind ordinary signal from hadron decays (not to mention combinatorial background)
- Published results in pp at $\sqrt{s} = 7$ and 13 TeV and Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV
- Data consistent with cocktail expectation
- Measure charm and beauty cross sections in pp
 - major background for any low-mass measurement
- Not yet sensitive to quantify the presence of an enhancement in Pb–Pb
- New results in Pb–Pb at $\sqrt{s_{NN}} = 5$ TeV
 - charm is not described by PYTHIA×N_{coll}
 - improved description when adding shadowing (EPPS16)

Torsten Dahms – Hard Probes 2018

ALICE, JHEP 09 (2018) 64 arXiv:1805.04407 (submitted to PLB), arXiv:1807.00923 (submitted to PRC)

Low-Mass Dielectrons

- Emitted from all stages of the collisions w/o strong final-state interactions
 - search for signals of thermal radiation and chiralsymmetry restoration (p modification)
 - hidden behind ordinary signal from hadron decays (not to mention combinatorial background)
- Published results in pp at $\sqrt{s} = 7$ and 13 TeV and Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV
- Data consistent with cocktail expectation
- Measure charm and beauty cross sections in pp
 - major background for any low-mass measurement
- Not yet sensitive to quantify the presence of an enhancement in Pb–Pb
- New results in Pb–Pb at $\sqrt{s_{NN}} = 5$ TeV
 - charm is not described by PYTHIA×N_{coll}
 - improved description when adding shadowing (EPPS16)

Low-Mass Dielectrons

- Emitted from all stages of the collisions w/o strong final-state interactions
 - search for signals of thermal radiation and chiralsymmetry restoration (p modification)
 - hidden behind ordinary signal from hadron decays (not to mention combinatorial background)
- Published results in pp at $\sqrt{s} = 7$ and 13 TeV and Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV
- Data consistent with cocktail expectation
- Measure charm and beauty cross sections in pp
 - major background for any low-mass measurement
- Not yet sensitive to quantify the presence of an enhancement in Pb–Pb
- New results in Pb–Pb at $\sqrt{s_{NN}} = 5$ TeV
 - charm is not described by PYTHIA×N_{coll}
 - improved description when adding shadowing (EPPS16)

Torsten Dahms – Hard Probes 2018

Direct Photons in pp and p-Pb

- Average of three independent measurements EMCal, PHOS, Photon Conversions
- Systematics limited
- Large uncertainties from hadron-decay background

ALI-PUB-143449

 $\frac{d^3\sigma}{dp^3}$ (pb GeV⁻²

Ш

ALICE, arXiv:1803.09857 (submitted to PRC)

N. Schmidt, Wed, 10h

Torsten Dahms – Hard Probes 2018

Direct Photons in pp and p-Pb

- Average of three independent measurements EMCal, PHOS, Photon Conversions
- Systematics limited
- Large uncertainties from hadron-decay background
- New: multiplicity dependence in p–Pb
- Limits consistent with NLO pQCD in pp and p-Pb
 - pQCD scaled by N_{coll}
 - p-Pb data not yet sensitive to nPDF effects

ALI-PUB-143449

C C

 $\frac{d^3\sigma}{dp^3}$ (pb

ALICE, arXiv:1803.09857 (submitted to PRC)

N. Schmidt, Wed, 10h

Direct Photons in Pb–Pb

- Clear direct photon signal in Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV
- Consistent with models of thermal radiation from ulletQGP
- Large uncertainties on v_2 \rightarrow no direct-photon puzzle at the LHC (yet?)

ALICE, arXiv:1805.04403 (submitted to PLB)

γ -Jet Correlations in pp and p-Pb at $\sqrt{s_{NN}} = 5$ TeV $\mathbf{O}\mathbf{O}$

- Unique access to low- Q^2 and low- x_{Bi} region
- As expected: no significant differences between pp and p–Pb in
 - fragmentation function
 - angular correlations
 - jet yield
- Reference for Pb-Pb measurement

Torsten Dahms – Hard Probes 2018

M. Arratia, Tue, 16h25

jet

 $\Delta \varphi$

Inclusive Jets: Quenching in Pb–Pb at $\sqrt{s_{NN}} = 5$ TeV

- New: measured with jet radii up to R = 0.4
- R dependence probes the angular distribution of medium-induced radiation
 - Hint of tension with most models at low p_{T}

Torsten Dahms – Hard Probes 2018

(model references in backup)

• Study QCD $1 \rightarrow 2$ splitting function in pp

• momentum fraction z_g carried hard jet component after removing soft jets with momentum fraction z

$$z = \frac{\min(p_{\mathrm{T},1}; p_{\mathrm{T},2})}{p_{\mathrm{T},1} + p_{\mathrm{T},2}} > z_{\mathrm{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

- No dependence on jet p_T (as expected)
 - probe now high- p_{T} jets (180 GeV/c)
- Depends on jet cone radius at low p_T → points to non-perturbative effects
- Studied out to R = 0.5

 \mathbf{O}

Jet Structure: Splitting Function

Torsten Dahms – Hard Probes 2018

es	ult!
1	
= 0.2 = 0.3	
= 0.4 = 0.5	
2011	
	لسلسلسلسا
0.5	Zg

• Study QCD $1 \rightarrow 2$ splitting function in pp

• momentum fraction z_g carried hard jet component after removing soft jets with momentum fraction z

$$z = \frac{\min(p_{\mathrm{T},1}; p_{\mathrm{T},2})}{p_{\mathrm{T},1} + p_{\mathrm{T},2}} > z_{\mathrm{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

here: $z_{cut} = 0.1, \beta = 0$

- No dependence on jet p_T (as expected)
 - probe now high- p_{T} jets (180 GeV/c)
- Depends on jet cone radius at low p_T → points to non-perturbative effects
- Studied out to R = 0.5

Jet Structure: Splitting Function

Torsten Dahms – Hard Probes 2018

- Study number of sub-jets within jets
 - Quantify how pronounced N prongs are in a jet

$$\tau_N = \frac{\sum_i p_{\mathrm{T},i} \min(\Delta R_{1,i}, \Delta R_{2,i}, \dots \Delta R_{N,i})}{R \sum_i p_{\mathrm{T},i}}$$

→ τ_N → 0: *N* or less cores

 \mathbf{OO}

- → τ_N → 1: at least *N*+1 cores
- → τ_2/τ_1 → 0: jet has 2 prongs

N. Zardoshti, Thu, 14h40

Torsten Dahms – Hard Probes 2018

- Study number of sub-jets within jets
 - Quantify how pronounced N prongs are in a jet

$$\tau_N = \frac{\sum_i p_{\mathrm{T},i} \min(\Delta R_{1,i}, \Delta R_{2,i}, \dots \Delta R_{N,i})}{R \sum_i p_{\mathrm{T},i}}$$

→ τ_N → 0: *N* or less cores

 $\mathbf{O}\mathbf{O}$

- → τ_N → 1: at least *N*+1 cores
- ► $\tau_2/\tau_1 \rightarrow 0$: jet has 2 prongs
- Different structures probed by different reclustering algorithms (e.g. C/A or k_{T})
- Splitting of sub-jets in pp described by PYTHIA
 - use PYTHIA for energy extrapolation: 7 TeV \rightarrow 2.76 TeV

N. Zardoshti, Thu, 14h40

Torsten Dahms – Hard Probes 2018

$$\tau_N = \frac{\sum_i p_{\mathrm{T},i} \min(\Delta R_{1,i}, \Delta R_{2,i}, \dots \Delta R_{N,i})}{R \sum_i p_{\mathrm{T},i}}$$

Particle ID in Jets: Deuterons

- Are deuterons created in jets?
 - e.g. by coalescence of protons and neutrons
 - directly linked to baryon production in jets
- If yes, should observe a correlation of deuterons with other hadrons in jet
- High- p_T deuterons show angular correlation with high- p_T hadrons in pp at $\sqrt{s} = 13$ TeV
 - indication that deuterons are also produced in jets (and not only non-composite hadrons)

B. Schaefer, Tue, 12h05

Heavy Flavour

- Identify heavy flavour jets via:
 - electrons from semileptonic HF decays
 - fully reconstructed D⁰ meson
- (NLO event generator)

Torsten Dahms – Hard Pro Bes 2018045

Particle ID in Jets: Heavy Flavour

- Identify heavy flavour jets via:
 - electrons from semileptonic HF decays
 - fully reconstructed D⁰ meson
- Charged HF jets well reproduced by POWHEG (NLO event generator)
- No suppression of D-tagged jets in p–Pb

ALI-PREL-309083

Torsten Dahms – Hard Probes 2018

Particle ID in Jets: Heavy Flavour

- Identify heavy flavour jets via:
 - electrons from semileptonic HF decays
 - fully reconstructed D⁰ meson
- Charged HF jets well reproduced by POWHEG (NLO event generator)
- No suppression of D-tagged jets in p–Pb
- Clear suppression of D-tagged jets in Pb–Pb
 - comparable to D-meson suppression

ALI-PREL-157488

- Pb–Pb: indication of Λ_c/D larger than in pp
 - suggests coalescence contributes to hadronisation in Pb–Pb

- Pb–Pb: indication of Λ_c/D larger than in pp
 - suggests coalescence contributes to hadronisation in Pb–Pb

- Pb–Pb: indication of Λ_c/D larger than in pp
 - suggests coalescence contributes to hadronisation in Pb–Pb

- Pb–Pb: indication of Λ_c/D larger than in pp
 - suggests coalescence contributes to hadronisation in Pb–Pb
- pp: Λ_c (and Ξ_c) productions higher than expected (based on e⁺e[−] data from LEP)
 - p–Pb: no significant difference to pp for Λ_c/D
 - impact on total charm cross section estimates

- (based on e⁺e⁻ data from LEP)

D Mesons & Event-Shape-Engineering

• ESE to distinguish different initial state geometries for same impact parameter

second-harmonic reduced flow vector

$$q_2 = |\overrightarrow{Q_2}|/\sqrt{M}, \quad \overrightarrow{Q_2} = \sum_{i=1}^{M} e^{i2\phi_j}$$

A A

Reaction plane Ψ_{RP}

A

D Mesons & Event-Shape-Engineering

• ESE to distinguish different initial state geometries for same impact parameter

second-harmonic reduced flow vector

$$q_2 = |\overrightarrow{Q_2}|/\sqrt{M}, \quad \overrightarrow{Q_2} = \sum_{i=1}^{M} e^{i2\phi}$$

• Ordering of D v_2 with q_2 in Pb–Pb at $\sqrt{s_{NN}} = 5$ TeV heavy flavour v₂ follows shape fluctuations

A

F. Grosa, Tue, 11h25

Torsten Dahms – Hard Probes 2018

D-Meson Directed Flow

"International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions"

Torsten Dahms – Hard Probes 2018

D-Meson Directed Flow

"International Conference on Hard Probes of Electromagnetism in High-Energy Nuclear Collisions"

"International Conference on Hard Probes of Electromagnetism in High-Energy Nuclear Collisions"

- Strong magnetic field created by passing charged nuclei
- Charm quarks produced at time of max. B field
- Charm quark relaxation time comparable to QGP life time
 - much larger than that of light quarks
- B field induces C-odd directed flow v₁
- Two effects: *B* and *E* fields with opposite signs
 - time order of maxima of *B* and *E* is important
 - prediction: B field effect dominates

D-Meson Directed Flow

• Light hadrons: observe positive slope of Δv_1

^{pp}-0.3 vodd + 1 1 0.2 0.1 -0.1 -0.2

-0.3

ALI-PREL-129689

Torsten Dahms – Hard Probes 2018

D-Meson Directed Flow

F. Grosa, Tue, 11h25

- Light hadrons: observe positive slope of Δv_1
- Indication of positive slope of Δv_1 with rapidity (significance of 2.7σ)

^{pp} > 0.3 v1^{dd +} 0.2 0.1 -0.1 -0.2

-0.3

ALI-PREL-129689

D-Meson Directed Flow

ALI-PREL-307073

Torsten Dahms – Hard Probes 2018

D-Meson Directed Flow

- Light hadrons: observe positive slope of Δv_1
- Indication of positive slope of Δv_1 with rapidity (significance of 2.7σ)
- Same trend as for light hadrons but $O(10^3) \times$ stronger

^{pp}∽0.3 V104 + 0.2 0.1 -0.1

-0.2

-**0.3**

ALI-PREL-129689

Torsten Dahms – Hard Probes 2018

F. Grosa, Tue, 11h25

D-Meson Directed Flow

- Light hadrons: observe positive slope of Δv_1
- Indication of positive slope of Δv_1 with rapidity (significance of 2.7σ)
- Same trend as for light hadrons but $O(10^3) \times$ stronger

Torsten Dahms – Hard Probes 2018

F. Grosa, Tue, 11h25

• New: electrons from beauty decays out to $p_T = 26 \text{ GeV}/c$

- separation from light and charm hadrons decays via template fit of impact parameter
- Suppression well described by models that include mass dependent energy loss

Quarkonia

• Updated R_{AA} at midrapidity based on measured pp reference at $\sqrt{s} = 5$ TeV

Clear signs of (re)generation:

- in central collisions: J/ψ at midrapidity less suppressed than at forward rapidity
- low- $p_T J/\psi$ less suppressed than high p_T

ALICE, PRL 119 (2017) 242301

Torsten Dahms – Hard Probes 2018

M. Köhler, Wed, 9h20

• Updated *R*_{AA} at midrapidity based on measured pp reference at $\sqrt{s} = 5$ TeV

Clear signs of (re)generation:

- in central collisions: J/ψ at midrapidity less suppressed than at forward rapidity
- low- $p_T J/\psi$ less suppressed than high p_T

• Sizeable $J/\psi v_2$

Torsten Dahms – Hard Probes 2018

M. Köhler, Wed, 9h20

- Updated *R*_{AA} at midrapidity based on measured pp reference at $\sqrt{s} = 5$ TeV \propto
- Clear signs of (re)generation:
 - in central collisions: J/ψ at midrapidity less suppressed than at forward rapidity
 - low- p_T J/ ψ less suppressed than high p_T
- Sizeable $J/\psi v_2$
- First evidence for $v_3 > 0!$
 - p_{T} -integrated significance 3.7 σ
 - ordering: $v_3/v_2(J/\psi) < v_3/v_2(h^{\pm})$
- Further corroborates the significant contribution of (re)generation as source of J/ψ production in Pb–Pb

0.5

 Updated R_{AA} at midrapidity based on measured pp reference at $\sqrt{s} = 5$ TeV

• Clear signs of (re)generation:

- in central collisions: J/ψ at midrapidity less suppressed than at forward rapidity
- low- p_T J/ ψ less suppressed than high p_T
- Sizeable $J/\psi v_2$
- First evidence for $v_3 > 0!$
 - p_{T} -integrated significance 3.7 σ
 - ordering: $v_3/v_2(J/\psi) < v_3/v_2(h^{\pm})$
- Further corroborates the significant contribution of (re)generation as source of J/ψ production in Pb–Pb

{EP}

N 0.2

0.15

0.1

0.05

-0.05 **⊢**

-0.1

ALI-PUB-138833

$J/\psi R_{AA}$ and Elliptic Flow

- Low- p_T excess of J/ ψ in peripheral Pb–Pb collisions with nuclear overlap, so far seen at
 - forward rapidity at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
 - midrapidity at $\sqrt{s_{NN}} = 5 \text{ TeV}$
 - consistent with calculations of J/ψ photoproduction

Torsten Dahms – Hard Probes 2018

Photoproduction of J/ψ in peripheral Pb–Pb collisions

ALI-PREL-148082

L. Massacrier, Tue, 9h40

- Low- p_T excess of J/ ψ in peripheral Pb–Pb collisions with nuclear overlap, so far seen at
 - forward rapidity at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
 - midrapidity at $\sqrt{s_{NN}} = 5 \text{ TeV}$
 - consistent with calculations of J/ψ photoproduction
- New results at forward rapidity at $\sqrt{s_{NN}} = 5$ TeV
 - Iso described by model calculations of photoproduction

A new probe for colour screening in QGP?

- formed very early in the collision
- passes through the QGP
- (re)generation insignificant at very low p_{T}

Photoproduction of J/ψ in peripheral Pb–Pb collisions

Quarkonia in small systems

- Faster than linear scaling with multiplicity for J/ ψ at midrapidity in pp at $\sqrt{s} = 13$ TeV
 - ▶ i.e. w/o rapidity gap between signal and multiplicity estimator

Quarkonia in small systems

- Faster than linear scaling with multiplicity for J/ ψ at midrapidity in pp at $\sqrt{s} = 13$ TeV
 - ▶ i.e. w/o rapidity gap between signal and multiplicity estimator
- Introducing a rapidity gap: significantly reduces deviation from linear multiplicity scaling
- Sign of autocorrelation (e.g. jet bias) w/o rapidity gap between signal and multiplicity estimator

Quarkonia in small systems

- Faster than linear scaling with multiplicity for J/ ψ at midrapidity in pp at $\sqrt{s} = 13$ TeV
 - i.e. w/o rapidity gap between signal and multiplicity estimator
- Introducing a rapidity gap: significantly reduces deviation from linear multiplicity scaling
- Sign of autocorrelation (e.g. jet bias) w/o rapidity gap between signal and multiplicity estimator
- Also measured $\Upsilon(1S)$ and $\Upsilon(2S)$ vs multiplicity

D. Thakur, Tue, 16h45

ALICE Upgrades: Run-3 and beyond

GEM-TPC

ITS

C. Bedda, Thu, 9h

• Major detector upgrades during the LHC Long Shutdown 2

▶ Focus on low-p_T and non-triggerable probes, e.g. low-mass dielectrons → continuous readout of 50 kHz Pb–Pb collisions: TPC, Muon arm, Fast **Interaction Trigger**

• Improve low- p_T tracking and vertexing for e.g. Λ_c : Inner Tracking System (ALPIDE: pixels based on CMOS MAPS technology)

Secondary-vertex reconstruction at forward rapidity: **Muon Forward Tracker**

 And beyond: FOCAL... Torsten Dahms – Hard Probes 2018 Th. Peitzmann, Tue, 11h05

ALICE Talks

Jack Otwinowski: "ALICE results on the production of charged particles in pp, p-Pb, Xe-Xe and Pb-Pb collisions at the LHC", Tue, 9h00 1. Laure Massacrier: "Coherent J/psi photo-production in Pb–Pb collisions with nuclear overlap with ALICE at the LHC", Tue, 9h40 2. **Dmitry Peresunko:** "Neutral-meson production in ALICE", Tue, 10h45 3. **Thomas Peitzmann:** "Forward photon measurements with ALICE at the LHC as a probe for low-x gluons", Tue, 11h05 4. Fabrizio Grosa: "Measurement of D-meson nuclear modification factor and flow in Pb-Pb collisions with ALICE at the LHC", Tue, 11h25 5. Shreyasi Acharya: "Event-multiplicity and event-shape dependence of open heavy-flavour production in pp collisions with ALICE at the LHC" Tue, 12h05 6. Brennan Schaefer: "Jet Associated Deuteron Production in pp collisions at 13 TeV with ALICE at the LHC", Tue, 12h05 7. Zuman Zhang: "Measurements of heavy-flavour decay leptons production in Pb–Pb and Xe–Xe collisions with ALICE at the LHC", Tue, 15h00 8. 9. **Antoine Lardeux:** "ALICE results on quarkonium production in p-Pb collisions", Tue, 15h40 **Miguel Arratia:** "Isolated photon + hadron and jet correlation in p–Pb and pp collisions with ALICE", Tue, 16h25 10. **Dhananjaya Thakur:** "Quarkonium production as a function of charged particle multiplicity in pp and p-Pb collisions measured by ALICE at the LHC", Tue, 16h45 11. Cristina Terrevoli: "Open-heavy-flavour production and elliptic flow in p-Pb collisions at the LHC with ALICE", Tue, 17h05 12. Jaime Norman: "hadron+jet measurements in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE", Tue, 17h25 13. Hyeonjoong Kim: "Using di-hadron correlations to investigate jet modifications in Pb–Pb collisions with ALICE", Tue, 17h45 14. Markus Köhler: "Quarkonium production in Pb–Pb and Xe–Xe collisions with ALICE at the LHC", Wed, 9h20 15. **Markus Fasel:** "Jet substructure measurements in pp collisions at $\sqrt{s} = 13$ TeV with ALICE", Wed, 9h40 16. Amal Sarkar: "Measuring electroweak boson production in p–Pb and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE at LHC", Wed, 9h40 17. Nicolas Schmidt: "Direct photon production and flow at low transverse momenta in pp, p-Pb and Pb-Pb collisions", Wed, 10h00 18. James Mulligan: "Inclusive jet measurements in pp and Pb-Pb collisions with ALICE", Wed, 11h05 19. Alberto Caliva: "Low-mass dilepton measurements with ALICE at the LHC", Wed, 12h05 20. Sandeep Dudi: "Identified particle production in p-Pb collisions at 8.16 TeV with ALICE at the LHC", Wed, 12h05 21. 22. Cristina Bedda: "Enhanced hard-probes measurements in the 2020s with the ALICE Upgrade", Thu, 9h00 23. Elisa Meninno: "Charm baryon production in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC", Thu, 11h05 Salvatore Aiola: "Measurements of heavy-flavour correlations and jets with ALICE at the LHC", Thu, 11h45 24. Nima Zardoshti: "Exploring the phase space of jet splittings at ALICE in pp and Pb–Pb collisions using jet shapes and grooming techniques", Thu, 14h40 25.

Torsten Dahms – Hard Probes 2018

- 1.
- 2. ALICE" (ID 192)
- 3. Alexander Borissov: " Σ^0 and Σ^0 production in pp Collisions at $\sqrt{s} = 7$ TeV" (ID 207)
- 4.
- 5. with ALICE" (ID 289)
- 6. 290)
- collisions at $\sqrt{s_{NN}} = 5.02$ TeV" (ID 305)
- 8. Patrick Huhn: "Data-driven particle composition correction of tracking efficiency for charged particles with ALICE" (ID 323)
- 9. Ran Xu: "Isolated photon-charged hadron correlation in pp collisions at 13 TeV" (ID 348)
- 11. Ritsuya Hosokawa: "Measurement of jet radial profile through jet-hadron correlation in Pb–Pb collisions at 5.02 TeV" (ID 375)
- 12. Artem Isakov: "Performance of b jet-tagging algorithm in ALICE" (ID 596)

Posters

Sebastian Scheid: "Direct-photon and heavy-flavour production in proton-proton collisions at $\sqrt{s} = 7$ TeV" (ID 188) **Erin Gauger:** "Nuclear modification factor of beauty-decay electrons in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with

Antonio Uras: "Low-mass dimuon measurements in pp and Pb-Pb collisions with ALICE at the LHC" (ID 231)

Rathijit Biswas: "Measurement of charged jet cross-section and properties in proton–proton collisions at 2.76 TeV

Andrea Dubla: "Magnetic fields and directed flow of D mesons in heavy-ion collisions with the ALICE detector" (ID

Marcelo Munhoz: "Measurement of electrons from heavy-flavour hadron decays as a function of centrality in p-Pb

10. Yongzhen Hou: "Multiplicity dependent charged jet production in pp collisions at 13 TeV with ALICE" (ID 349)

Torsten Dahms – Hard Probes 2018

Summary

- New results on hard and electromagnetic probes in heavy-ion collisions
- Benefitting from high-statistics pp reference at $\sqrt{s} = 5$ TeV \bullet
- Moving towards connecting hard and soft probes
 - jet structure and ID
 - heavy-flavour baryon production
 - vent-shape-engineering with open and hidden heavy flavour
 - ► J/ψ V₃
 - quarkonia vs multiplicity in small systems
 - first look at low-mass dielectrons, more in Run 3

Backup

• Comparison of v_2 with event shape engineering for light and heavy flavour

Torsten Dahms – Hard Probes 2018

Heavy Flavour Directed Flow

S. Das et al., PLB 768 (2017) 260

References for Jet-RAA Models

- LBT: Y. He et al., in arXiv:1809.02525 and PRC 91 (2015) 054908
- SCETG: H. Li et al., arXiv:1801.00008 and Z.-B. Kang, PLB 769 (2017) 242
- Hybrid: J. Casalderrey-Solana et al., JHEP 10 (2014) 19; JHEP 03 (2016) 53; JHEP 03 (2017) 135 and D. Pablos et al., JHEP 03 (2018) 10
- JEWEL (generated internally, R. Hosokawa): K. Zapp et al. JHEP 03 (2013) 80; JHEP 07 (2017) 141 and EPJ C 76 (2016) 695

