

Jet-medium interactions in QCD matter Tan Luo Central China Normal University

Hard Probes 2018

Aix-Les-Bains

Outline

Introduction

Models

Jet induced medium response

• Observables

• Summary

Jet propagation in the QGP medium

• Jet: a spray of particles correlated to an initial hard parton. (defined by the jet algorithm)

• Jets are multiscale probes to explore the properties of the quark-gluon plasma.

Jet-medium interaction

 Jet energy loss: Energy propagated outside the jet cone. (Different from parton energy loss)

• Medium response: some medium constituents get excited by the jet.

Where does the lost energy go?

• The energy and momentum deposited by the jet shower into the medium appear at large angles away from the jet axis.

Jet induced medium response

- Thermalization : How does the deposited energy thermalize?
- Propagation: How does the deposited energy propagate?
- What are in the background of a reconstructed jet?

Part of the medium background is correlated with jet (inside and outside the jet cone).

Parton energy loss in QGP

- Jet weakly coupled to the medium pQCD based calculation (BDMPS-Z, GLV, AMY, HT, SCET_G) (LBT, MARTINI, QPYTHIA, JEWEL, YaJEM,)
- Jet strongly coupled to the medium AdS/CFT (HYBRID)

Jet quenching models with medium response

- LBT [HT] : recoiled partons transported. (shower + transport) Recoil-medium interaction
- CoLBT-hydro [HT] : Transport + Hydro parallel simulation. (shower + transport) Recoil-medium interaction
- MARTINI [AMY] : recoiled partons transported. (shower + transport) Recoil-medium interaction
- JEWEL [BDMPS-Z] : recoiled partons free-stream. (modified parton shower) No recoil-medium interaction
- Hybrid [AdS/CFT]: fully thermalized wake. (modified parton shower) Recoil-medium interaction (simplified)
- Coupled Jet-Fluid [HT] : solve Boltzmann equation semi analytically + Hydro simulation Recoil-medium interaction
- AMPT, BAMPS, etc

Monte Carlo Jet evolution

A Linear Boltzmann Transport (LBT) Model

- Rescattering of the soft partons beyond pQCD.
- Jet-Medium interaction : Where is the feed back to the thermal background ?

A coupled LBT Hydro (CoLBT-hydro) Model

CLVisc: (3+1)D viscous hydrodynamics parallelized on GPU using OpenCL

MC Jet propagation + MC Hydro evolution

JET

Modified medium background

Jet induced medium response

Chen, Cao, Luo, Pang, Wang, Phys.Lett. B777 86-90

CoLBT-hydro

Single jet suppression

- Effect of medium response (black vs red)
- Effect of diffusion wake (red vs blue)

LBT Y He, SS Cao, W Chen, T Luo, LG Pang, XN Wang 1809.02525 (2018) 11

Single jet suppression (Cone size dependence)

- The cone size dependence is quantitatively depended on jet energy loss
- Energy recovered at large angle via the inclusion of medium response

$$R_{AA} = \frac{1}{\left\langle N_{coll} \right\rangle} \frac{d^2 N_{jet}^{AA} / d\eta_p dp_T^{jet}}{d^2 N_{jet}^{pp} / d\eta_p dp_T^{jet}}$$

R. K. Elayavalli, K. C. Zapp, JHEP 1707, 141

Jet-Fluid Tachibana, Chang, Qin, PRC 95, 044909

Jet shape (inside jet cone)

0.3

Jet shape (outside jet cone)

- Energy lost by the hard parton is transported out of the jet cone by the soft parton.
- Medium response to jet generally lead to enhancement at large angle.

Missing pT (full picture)

- Energy is recovered at large angles in the form of soft particles.
- Adding medium response is essential for a full understanding of jet quenching.

Daniel Pablos : Thursday

$$\Delta = \sqrt{\Delta \phi_{Trk,jet}^2 + \Delta \eta_{Trk,jet}^2}$$
$$p_T^{\parallel} = \left(\sum_i -p_T^i \cos(\phi_i - \phi_{dijet})\right) \left| R_{down} < \Delta < R_{up} \right|$$

CMS

15

Groomed jet mass

- Enhancement of the large mass range.
- The rise in large mass tail is possibly due to the recoil particles scattered at larger angles.

LBT T Luo, SS Cao, Y He, GY Qin, XN Wang in preparartion

γ-hadron correlations

- The suppression of high pT hadrons LBT: hard parton energy loss
- The enhancement of soft hadrons at small pT Hydro: medium excitation
- With increasing pT-gamma transition point from suppression to relative enhancement shifts to larger ξ .
- This transition point corresponds to a fixed pT range.

$$I_{AA}(z) = D_{AA}(z) / D_{pp}(z) \qquad z = p_T^h / p_T^{\gamma}$$
$$\xi = \log \frac{1}{z}$$

CoLBT-hydro W Chen, SS Cao, T Luo, LG Pang, XN Wang Phys.Lett. B777 (2018) 86-90

γ-hadron correlations

- The suppression of high pT hadrons LBT: hard parton energy loss
- The enhancement of soft hadrons at small pT Hydro: medium excitation
- With increasing pT-gamma transition point from suppression to relative enhancement shifts to larger ξ .
- This transition point corresponds to a fixed pT range.

$$I_{AA}(z) = D_{AA}(z) / D_{pp}(z) \qquad z = p_T^h / p_Z$$
$$\xi = \log \frac{1}{z} \qquad \text{Wei Chen : Tuesday}$$

18

CoLBT-hydro W Chen, SS Cao, T Luo, LG Pang, XN Wang Phys.Lett. B777 (2018) 86-90

y-hadron correlations

- Large suppression at large pT range.
- Enhancement at small pT range.
- A broaden peak at small pT range.
- Suppression of hadron yield at small pT range in the near side due to diffusion wake.

 σ : gaussian width

(b) $1 < p_T^h < 2 \text{GeV/c}$

★ p+p

 $\sigma = 0.68$

 $\sigma = 0.47$

 $\sigma = 0.396$

1.6

0.8

0.6

0.4

0.2

Au+Au jet-only

• $\sigma = 0.946$

 $\sigma = 0.837$

 $\sigma = 0.736$

Au+Au jet+m.e.

(a) $0 < p_T^h < 1$ GeV/c

6.0

5.0

1.0

 $^{4.0}$ 4.0 $^{4.0}$ 3.0 $^{\prime}$

Jet chemistry

- Challenge for jet hadronization
- Focusing on ratio between different hadrons
- baryon/meson ratio in jet as a function of r $(\Lambda + \overline{\Lambda})/2K_S^0$ From jet-excited medium From jet fragmentation Yasuki Tachibana 0.5 0 **CoLBT-hydro** preliminary 0-10% PbPb5.02-ecut1 0-10% PbPb5.02-ecut2 p+p $\frac{p+\bar{p}}{\pi^++\pi^-}$

20

Things I have not covered

• Jet anisotropy and substructure

11 Parallel sessions, 2 focus on Jet-medium interaction on Tuesday 16:30

Summary

- Medium response is important to achieve a complete description of jet-medium interactions
- Implementation of jet induced medium response Recoil vs Hydro
- Medium response effect on the observables Modifications of both jet energy and jet substructures Enhancement of soft particles at large angle around jets
- Unique identification of medium response effect in jet Diffusion wake Jet chemistry

Outlook

• JETSCAPE: "Framework" of Event Generator for heavy ion collisions

Ron Soltz : Tuesday

Yasuki Tachibana : Wednesday

Thanks

Jet mass

• Two competing effects : Decrease by jet quenching + Increase by including medium recoil

Jet splitting function $z_g \equiv \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{cut} (\frac{\Delta R}{R_0})^{\beta}$

- Some theoretical calculation suggest that the data prefer coherent energy loss.
- The MC calculation show that the inclusion of the recoil (medium response) will lead to stronger modification of the groomed jet splitting function.

