Future heavy ion facilities:

Andrea Dainese (INFN Padova, Italy)

on behalf of the HI Working Group of FCC-hh/Physics&Exp

Outline

- FCC Study activities and timeline
- Ions at the FCC: projected performance
- QGP studies
- nPDFs and gluon saturation

FCC Study

https://fcc.web.cern.ch

International FCC collaboration (CERN as host lab) to study:

pp-collider (FCC-hh)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV pp in 100 km

- ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- HE-LHC with FCC-hh technology
- p-e (FCC-he) option, IP integration, e⁻ from ERL

	Pb-Pb	p-Pb
FCC-hh	39 TeV	63 TeV
HE-LHC	10.6 TeV	17 TeV

Timeline

2014: Study kickoff, formation of international collaboration

2018: CDR as input for European Strategy for Particle Physics Update

FCC-hh reference detector

- Detector concept; could be implemented in two experiments
- Central solenoid (4T) + two forward solenoids (4T)
- Si-tracker 400 m² surface |η|<6
- ECAL&HCAL |η|<6, granularity about x4 ATLAS/CMS
- Muon system à la ATLAS/CMS

FCC-hh reference detector

- Detector concept; could be implemented in two experiments
- Central solenoid (4T) + two forward solenoids (4T)
- Si-tracker 400 m² surface |η|<6
- ECAL&HCAL |η|<6, granularity about x4 ATLAS/CMS
- Muon system à la ATLAS/CMS

Same detector for heavy ions?

- pp with pile-up of 1000 more challenging than Pb-Pb environment
- Excellent performance for hard probes also in HI collisions
- Coverage for forward measurements up to |η| = 6
- Operation with reduced field would give access to low-p_T observables
- Silicon timing layers for pile-up rejection could be used for hadron PID

FCC HI working group and documents

- Ions at FCC-hh Working Group:
 - Sub-group of "FCC-h Physics, Experiments, Detectors"
 - Machine studies: M. Schaumann, J. Jowett, E. Logothetis Agaliotis
 - ➤ Twiki https://twiki.cern.ch/twiki/bin/view/LHCPhysics/Heavylons
- Workshops/meetings 2013-17
 - https://indico.cern.ch/event/331669/ and links therein
- In FCC-hh Physics Yellow Report 3, 635–692, arXiv:1605.01389
 - Section editors: N. Armesto, A. Dainese, D. d'Enterria, J. Jowett, J.P.Lansberg, G. Milhano, C. Salgado, M. Schaumann, M. van Leeuwen, U. Wiedemann
- Contribution to FCC CDR 2018

Outline

- ◆ FCC Study activities and timeline
- Ions at the FCC: projected performance
- QGP studies
- nPDFs and gluon saturation

HI luminosity projections

- Two scenarios considered for FCC: Baseline and Ultimate
 - \triangleright reduced bunch spacing (50 ns) and β^* (0.3 m)

	Unit	Baseline		Ultimate	
Operation mode	-	Pb–Pb	p–Pb	Pb–Pb	p–Pb
Number of Pb bunches	-	2760		5400	
Bunch spacing	[ns]	100		50	
Peak luminosity (1 experiment)	$[10^{27} { m cm}^{-2} { m s}^{-1}]$	80	13300	320	55500
Integrated luminosity (1 experiment, 30 days)	$[nb^{-1}]$	35	8000	110	29000

Includes 50% operation efficiency

- → >100 nb⁻¹/month in Pb-Pb in ultimate scenario: ~ 10x full LHC programme
- ◆ 15 1-month HI runs in tentative FCC-hh schedule → ~150 x LHC programme
- ◆ HE-LHC, first estimate: x2 lumi than at LHC; further improvement with lighter nuclei (reduced BFPP), e.g. L_{NN} for Xe-Xe at HE-LHC ~ 5x Pb-Pb at LHC

Outline

- FCC Study activities and timeline
- ◆ Ions at the FCC: projected performance
- QGP studies
 - Global properties and collective effects
 - Hard probes and jet quenching
- nPDFs and gluon saturation

Global properties at FCC (and HE-LHC)

FCC wrt LHC: $dN_{ch}/d\eta \times 1.8$

 $\sqrt{s_{NN}}$ (GeV)

Volume x1.8

 $dE_T/d\eta$ (& ϵ) x2.2

	Quantity	Pb–Pb 2.76 TeV	Pb–Pb 5.5 TeV	Pb–Pb 10.6 TeV	Xe–Xe 11.5 TeV	Pb–Pb 39 TeV
	$\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ at $\eta=0$	1600	2000	2400	1500	3600
	$\mathrm{d}E_{\mathrm{T}}/\mathrm{d}\eta$ at $\eta=0$	1.7-2.0 TeV	2.3-2.6 TeV	3.1-3.4 TeV	$pprox 1.5~{ m TeV}$	5.2-5.8 TeV
	Homogeneity volume	$5000 \; \mathrm{fm^3}$	$6200 \; \mathrm{fm^3}$	$7400~\mathrm{fm^3}$	$4500 \; \text{fm}^3$	$11000 \; \mathrm{fm^3}$
ŕ	Decoupling time	$10~\mathrm{fm}/c$	11 fm/c	11.5 fm/c	$10~\mathrm{fm}/c$	13 fm/c
	arepsilon at $ au=1$ fm/ c	12-13 GeV/fm ³	16-17 GeV/fm ³	22-24 GeV/fm ³	$\approx 15~{\rm GeV/fm^3}$	35–40 GeV/fm ³

Xe-Xe at HE-LHC: similar "medium" as Pb-Pb 2.76 TeV, with ~5 times larger L_{NN} wrt Pb-Pb at 5.5 TeV → optimal scenario for HE-LHC?

Higher temperature: thermal charm?

T evolution from hydrodynamic simulation

900 MeV at τ = 0.2 fm/c 650 MeV at τ = 0.5 fm/c ◆ Large secondary production of charm pairs in the medium $gg \rightarrow c\overline{c}$, $q\overline{q} \rightarrow c\overline{c}$

- Up to 50-100% "enhancement" wrt primary charm
- Sensitive to QGP properties: T vs τ , and τ_0

C.M. Ko, Y. Liu, JPG43 (2016) no. 12, 125108 K. Zhou et al., PLB758 (2016) 434

Quarkonia: large ψ enhancement? full Y melting?

- Large charm yield from hard scattering + thermal production would lead to J/ψ enhancement (R_{AA}>>1)
 - J/ψ yield could be sensitive to secondary/thermal charm production

- Y(1S) would melt when T > 350 MeV, may be reached only at FCC G. Aarts et al, JHEP 07 (2014) 097
- However, large bb yields (~20 pairs in central Pb-Pb) could lead to regeneration in the bottomonium sector (Y R_{AA}> 1)

A.Andronic, et al., based on JPG38 (2011) 124081

New hard probes at FCC energy: top events

- ◆ Increase of \sqrt{s} and L_{int} /month by ~ x30 at FCC will enable new ways to probe the QGP
- Top cross section increases by x80 from 5.5 TeV to 39 TeV
 - ightharpoonup Kinematic simulation study: $3x10^5$ $t\bar{t} o b\bar{b} \, \ell\ell \, \nu\nu$ per run in the baseline scenario (35/nb)
 - ightharpoonup Top p_T distribution up to ~ 2 TeV/c

D. d'Enterria, et al. PLB746 (2015) 64

Boosted color singlets from top events

$$t\overline{t} \rightarrow b\overline{b} + q\overline{q} + \ell + v$$

This $q\overline{q}$ is produced as a color singlet and it "sees" the QGP with a **time delay** τ_{tot} of up to several fm/c given by the boost of the top and of the W

The rest of the final state $2 b - jets + \ell + E_{r}$ is used to tag the event topology

- Boosted-top events can therefore be used to address two novel studies in the sector of parton energy loss:
 - 1. Time-evolution of QGP opacity \rightarrow at which time τ_m does the quenching "stop"?
 - 2. Role of color coherence in parton energy loss

- Energy loss of the $q\overline{q}$ pair \rightarrow shift of reconstructed W mass
- Shift vs. top p_T probes the time-evolution of the QGP density
- A first glimpse at LHC? (possibly with lighter ions)
- Scan entire QGP lifetime at FCC, and up to 6-7 fm/c at HE-LHC

Apolinario, Milhano, Salam, Salgado, PRL120 (2018) 23, 232301

Probing the QGP with Higgs bosons at FCC?

- ♦ Higgs lifetime τ ~50 fm/c > QGP lifetime ~10 fm/c
- Strong interaction with QGP induces decay to gg depleting its decay channels to γγ and ZZ*
- Detailed calculation of "absorption" cross section in 2D+1 hydro medium with different EoSs
- \rightarrow suppression by 15% at p_T<50 GeV/c

D. d'Enterria, C. Loizides, arXiv:1809.06832

→ see talk by C. Loizides

Probing the QGP with Higgs bosons at FCC?

- ♦ Higgs lifetime τ ~50 fm/c > QGP lifetime ~10 fm/c
- Strong interaction with QGP induces decay to gg depleting its decay channels to γγ and ZZ*
- Detailed calculation of "absorption" cross section in 2D+1 hydro medium with different EoSs

 \rightarrow suppression by 15% at p_T<50 GeV/c

- First estimate of significance with FCC reference detector:
- ~ 5 (10) σ in one Pb-Pb month with baseline (ultimate) L_{int}
 - → Promising!

D. d'Enterria, C. Loizides, arXiv:1809.06832

D. d'Enterria, arXiv:1701.08047

Outline

- ◆ FCC Study activities and timeline
- ◆ Ions at the FCC: projected performance
- QGP studies
- nPDFs and gluon saturation

High-density QCD in the initial state: Saturation at low x

Explore new unknown regime of QCD: when gluons are numerous enough (low-x)
 & extended enough (low-Q²) to overlap → Saturation, Non-linear PDF evolution

Enhanced in nuclei: more gluons per unit transverse area

Saturation affects process with $Q^2 < few \times Q_S^2$ Explore saturation region:

- \rightarrow decrease x (larger \sqrt{s} , larger y)
- **→increase A**

Kinematic coverage Q² vs. x: pA LHC

Kinematic coverage Q² vs. x: pA FCC

→ See talk by M. Klein for complementarity with FCC-he

HP2018, Aix-Les-Bains, 04.10.18 A. Dainese for the FCC HI wg

Searching for saturation with forward di-jet measurements in p-Pb

- Saturation effects → azimuthal decorrelation of di-jets
- Focus on di-jets with rapidity 3-5: small-x partons in the Pb
- Decorrelation k_T would be of the order of Q_s (~ few GeV)

C. Marquet et al., based on JHEP 1612 (2016) 034

Constraining nuclear PDFs with top

Within collinear factorisation, nuclear effects (including high-density effects at small-x)
described using nuclear modifications to the proton PDFs:

◆ Top production measurements at FCC in p-Pb and in Pb-Pb can reduce by a factor \sim 2 the present uncertainty on the nPDFs at Q = m_{top} , in particular at x > 0.1 (EMC region)

D. d'Enterria et al., PLB746 (2015) 64

Summary

- ◆ Pb-Pb at FCC: 39 TeV; L_{int} projections >100x LHC programme
- Unique studies of the Quark-Gluon Plasma
 - ▶ Larger temperature → thermal production of charm, Y(1S) melting
 - ightharpoonup Larger \sqrt{s} and $L_{int} \rightarrow new$ hard observables, e.g. top, Higgs, to characterize the QGP
- Unique studies of high-density initial state
 - > Access to saturation region (down to x<10-6) with perturbative probes, e.g. forward-y di-jets
 - Access to [small-x, large-Q²] region with top, W, Z
- Unique contributions to other sectors of HEP (see Extra Slides)
 - $\triangleright \gamma \gamma$ collisions (search for axion-like particles, see new limits presented by CMS)
 - > Fixed-target collisions with extracted beams or internal gas targets
 - Input to collision models for ultra-high-energy cosmic rays

EXTRA SLIDES

Photon-induced collisions

- ◆ Nuclei generate strong EM fields from coherent emission of Z=82 p's
- Photon-induced collisions can occur when two nuclei cross without interacting hadronically

- Huge photon fluxes:
 - $ightharpoonup \sigma(\gamma-\text{Pb}) \sim Z^2 (\sim 10^4 \text{ for Pb})$ larger than in pp
 - $ightharpoonup \sigma(\gamma-\gamma) \sim Z^4 (\sim 5 \cdot 10^7 \text{ for Pb-Pb})$ larger than in pp
- Maximum c.m.s. energies for Pb-Pb at FCC:

$$\sqrt{s_{\gamma\gamma}} = W_{\gamma\gamma} \sim 1.2 \text{ TeV } \sqrt{s_{\gamma Pb}} \sim 7 \text{ TeV}$$

$\gamma\gamma$ physics at FCC (Pb-Pb)

- Effective lumi $dL_{eff}/dW_{\gamma\gamma}$ for $\gamma\gamma$ processes from LHC to FCC: $x10^2$ at low masses, $x10^4$ for Higgs, $x10^5$ for ZZ production
 - Unique tests for EW sectors of the SM

 γγ→γγ process has potential sensitivity to New Physics

$$N_X = \int \frac{\mathrm{d}L_{\gamma\gamma}}{\mathrm{d}W_{\gamma\gamma}} W_{\gamma\gamma} \sigma_X^{\gamma\gamma} (W_{\gamma\gamma})$$

e.g. N_{higgs} >100 counts/month:

D. d'Enterria et al., arXiv:1510.08141, arXiv:1602.08088, arXiv:1712.10104

Fixed-target collisions with FCC beams

- ◆ Fixed-target collisions with FCC (or LHC) p or Pb beams could be realized with either:
 - Beam extraction, fast (magnet) or slow (bent crystals technique)
 - Internal gas detectors, à la LHCb-SMOG

	p@LHC	Pb@LHC	p@FCC	Pb@FCC
Nucleon–Nucleon c.m.s. energy ($\sqrt{s_{ m NN}}=$	114.6	72.0	306.6	192.5
$\sqrt{2E_bm_N})$ [GeV]				
$\Delta y_{\mathrm{c.m.s.}}^{\mathrm{lab}} = \ln(\gamma_{\mathrm{c.m.s.}}^{\mathrm{lab}} + \sqrt{(\gamma_{\mathrm{c.m.s.}}^{\mathrm{lab}})^2 - 1})$	4.80	4.33	5.79	5.32

- Luminosity and physics opportunities for LHC case are discussed in detail in the context of the AFTER@LHC proposal
- Heavy ion studies:
 - c.m.s. energy similar to RHIC energies
 - much larger luminosity and access to (very) backward rapidity region would enable unique and high-precision studies, e.g. related to quarkonium production and its cold and hot nuclear matter effects

AFTER: see e.g. S. J. Brodsky, et al., Phys. Rept. 522 (2013) 239–255, arXiv:1202.6585

Thermal charm production?

• Expect abundant secondary production of $c\bar{c}$ pairs in the medium

- Up to 50-100% "enhancement" wrt primary charm
- Sensitive to QGP properties: T vs τ, and τ₀

K. Zhou et al., PLB758 (2016) 434

C.M. Ko, Y. Liu, JPG43 (2016) no. 12, 125108

An interesting physics case for top: boosted color singlets in the QGP

2) Testing the role of color coherence

q-qbar with small opening angle; seen as color-singlet by the medium, **no interaction expected** Medium induces decoherence, opening angle increases → energy loss of color-octet's in the medium

Cosmic-rays MC tuning with FCC (Pb-Pb)

FCC pA and AA probe ankle-energy and provides strong constraints for hadronic Monte Carlos for UHECR (p,Fe+Air)