# Azimuthal anisotropy in 5.02 TeV Pb+Pb and 5.44 TeV Xe+Xe collisions with the ATLAS experiment

Klaudia Burka on behalf of the ATLAS Collaboration

Institute of Nuclear Physics PAN, Krakow, Poland

October 5, 2018







# Motivation

 Azimuthal anisotropy results from different pressure gradients S in different spatial directions



### Particle azimuthal distribution

Fingles: 
$$\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos[n(\phi - \Phi_n)]$$
  
Pairs:  $\frac{dN}{d\Delta\phi} \propto 1 + \sum_{n} 2v_n^a v_n^b \cos[n(\Delta\phi)]$ 



# **Motivation**

**Azimuthal anisotropy** results from different pressure gradients in different spatial directions



- Pb+Pb 5.02 TeV  $\rightarrow$  0.49nb<sup>-1</sup>
- Xe+Xe 5.44 TeV  $\rightarrow$  3 $\mu$ b <sup>-1</sup>

Particle azimuthal distribution



Two-particle correlations (2PC) and scalar-product (SP) methods

0

### v<sub>n</sub> harmonics in Pb+Pb collisions



- ♦ v<sub>n</sub> measured up to p<sub>T</sub> = 60 GeV → v<sub>2</sub>(p<sub>T</sub>) positive at highest p<sub>T</sub> → provide information about parton energy loss
- $\diamond$  The ordering:  $v_n > v_{n+1}$  in mid-central and peripheral collisions
  - $v_3 > v_4 > v_5 \approx v_2$  for the most central collisions at  $p_T = 3-5$  GeV
- $\diamond$  The v<sub>7</sub> harmonic is found to be non-zero for centralities 0-50%

### Ref: arXiv:1808.03951

# Universal scaling of v<sub>n</sub> harmonics

### Ref: arXiv:1808.03951



Simultanous scaling along the p<sub>T</sub> and v<sub>n</sub> axes was performed

 $\rightarrow$  Universal shapes for the v<sub>n</sub> (n=2,3) across the different centrality classes

 $\rightarrow$  Similarity in properties of the QGP evolving from different initial conditions

### Xe+Xe collisions – initial state fluctuations

### Ref: ATLAS-CONF-2018-011



- Integrated v<sub>n</sub> higher in the most central events for Xe+Xe
  - Smaller collision system → larger initial fluctuations

Reduced v<sub>n</sub>{Xe+Xe} value in mid-central and peripheral

Viscous effects

 Ratio v<sub>n</sub>{Xe+Xe}/v<sub>n</sub>{Pb+Pb} consistent with theoretical predictions (TRENTO model): Phys.Rev.C97,034904(2018)

### Summary

- New results from Pb+Pb and Xe+Xe collisions are obtained (arXiv:1808.03951, ATLAS-CONF-2018-011)
- Thanks to the excellent ATLAS detector and rich datasets:

 $\rightarrow$  Measured flow harmonics up v<sub>7</sub> and to a very high p<sub>T</sub> in Pb+Pb

 $\rightarrow$  Performed a comprehensive study of flow in Xe+Xe collisions at 5.44 TeV and compared to Pb+Pb at 5.02 TeV

### Thank you for your attention!

#### Azimuthal anisotropy in 5.02 TeV Pb+Pb and 5.44 TeV Xe+Xe collisions with the ATLAS experiment

Klaudia Burka, for the ATLAS Collaboration INP PAN, Krakow, Poland

HP2018, Aix-les-Bains, France, 01-05.10.2018

#### ABSTRACT

The high-statistics experimental data collected by the ATLAS experiment during the 2015 Pb+Pb and 2017 Xe+Xe LHC runs are used to measure charged particle azimuthal anisotropy. The flow harmonics,  $v_n$  (n=2-7), are obtained with the two-particle correlation, scalar-product and event-plane methods. Measurements of differential and global Fourier harmonics in Pb+Pb and Xe+Xe collisions in a wide range of transverse momenta (up to 60 GeV), pseudorapidity ( $|\eta| < 2.5$ ) and collision centrality (0-80%) are presented. The higher order harmonics, sensitive to fluctuations in the initial state, are precisely measured. In this analysis the  $v_i$  is obtained for the first time. The new flow results allow to improve the understanding of initial conditions of nuclear collisions, hydrodynamical behavior of quark-gluon plasma and parton energy loss.



05/10/18