Initial-state in heavy-ion collisions: Theory summary

Vladimir Skokov

Summary: speakers

 ≈ 15 theory talks in "Initial state"

▶ Nuclear PDF: Helenius, Khalek, Kusina, Paakkinen, . . .

▷ Low x in e-A: Beuf, Hänninen, Mäntysaari, . . .

 $\,\triangleright\, p\text{-}A,\, A\text{-}A\text{:}$ Armesto, Jalilian-Marian, Mace, Mazeliauskas, Mrowczynski, Venugopalan, . . .

A few talks have already been featured in Plenary section; they will not appear here

Summary: covered subjects

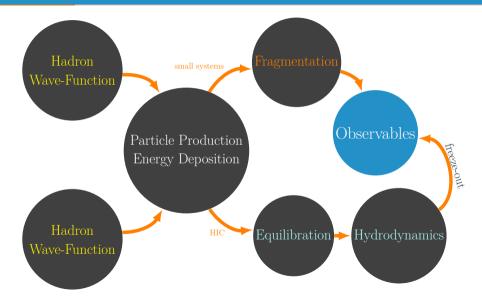
- ▶ Precision DIS: structure functions; photon, charm & bottom production
- ▶ Nuclear PDF: new methods, new constraints from current facilities, and possible constraints from feature facilities
- ▶ Saturation/Color Glass Condensate framework for gluon & photon production in hadronic collisions
- ▶ New ideas: Heavy quark transport in Glasma, Beyond conventional evolution
- ▶ Future facilities: nuclear structure & saturation
- ▶ Practical implementations: small x evolution to DIS and input for hadronic collisions and UPC; thermalization in A-A collisions at weak coupling; two gluon production within dilute-dense CGC

Heavy ion collisions

HIC create most optimal environment for probing Quark-Gluon Plasma

♦ Transport coefficients $(\eta/s, \zeta/s, \hat{q})$

◆ Equation of state (CP)

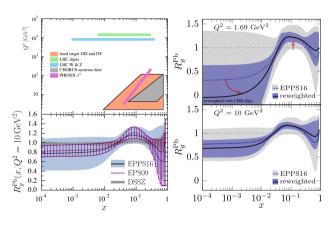

♦ Thermalization

• Running coupling $\alpha_s(T,\mu)$

♦ ...

Requires detailed understanding of initial state

High energy hadron collisions: multi-step process

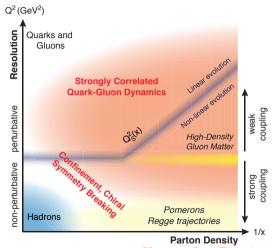

Hadron Wave-Function: nPDF

- Nuclear PDF ≠ superposition of nucelon PDFs
 ⇒ sensitivity to partonic structure of nucleus
- ♦ Important for extracting perturbative QGP properties
- ♦ Tension with experimental data may indicate onset of saturation

nPDF: new constraints from LHC dijets 5 TeV

- Dijet data → reduction of EPPS16 gluon uncertainty
- ◆ Data seems to favour rather deep shadowing
- Faster implementation for global analysis: Neural Network for nuclear PDF

Khalek: Wed 9:00

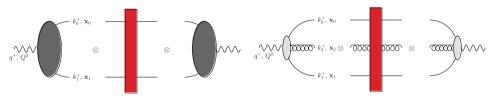

Paakkinen: Wed 11:25

lacktriangle AFTER@LHC: fixed target mode to constrain large-x content of nuclei

Kusina: Wed 11:45

High energy phase diagram of QCD

- ♦ Bulk of particle production is at small $p_{\perp} \sim \text{small } x \sim \frac{p_{\perp}}{\sqrt{s}} e^{-y}$
- ♦ QCD matter at high parton densities
- Weakly coupled, but non-perturbative: $g \to 0, gA^{\mu} \sim 1$ Müller: Mon 14:00
- ♦ BK & JIMWLK to account for multiple rescattering
- ♦ Use DIS to fix parameters, apply to hadronic collisions: NLO/NLL DIS

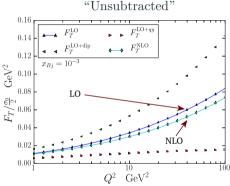

Venugopalan: Tue 10:45

E. Aschenauer et al. arXiv:1708.01527

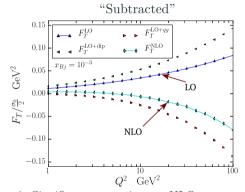
8

DIS: small-x

DIS factorization:



Beuf: Tue 9:00 Hänninen: Tue 9:20


DIS: small-x

Two schemes (both are formally NLO) DIS structure functions:

Hänninen: Tue 9:20

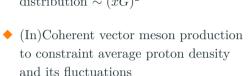
- ♦ Moderate corrections at NLO
- ♦ Positive NLO structure functions
- ▶ No good fits yet...
- ▶ Ultimate goal is NLO + NL Log resummation; need for consistent factorization

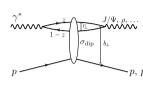
- ♦ Significant corrections at NLO
- ♦ Negative NLO structure functions

DIS: massive quarks

- lacktriangle Charm and bottom production \leadsto massive quarks
- ♦ Standard approach: Light Cone Perturbation Theory
- ♦ 30 year-old puzzle: beyond LO with massive quarks:

 **Mustaki et al, PRD43 (1991)
 - ${\color{red}\triangleright}$ Anomalous dimension for m_q renormalization is different from covariant PT ?!
 - ▶ Nontrivial gluon mass renormalization ?!
- lacktriangle New UV divergence in $k^+ \sim$ it matters how you apply Dimensional Regularization for terms with this UV divergence!
- ◆ Poincaré invariant regularization leads to resolution of the puzzle; LCPT calculation consistent with covariant PT
- Important input for small-x phenomenology: NLO DIS with massive quarks


Beuf: Tue 9:00


DIS input for p-A

 $x = 10^{-2}$

Diffraction: sensitivity to gluon distribution $\sim (xG)^2$

W = 75 GeV

◆ IP-SAT model: Saturation is in model's parametrization:

$$N(\mathbf{r}, \mathbf{b}, x) = 1 - \exp\left[-\# \mathbf{r}^2 g(x, \mu^2) T_p(\mathbf{b})\right]$$

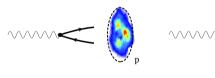
◆ To include saturation dynamics: JIMWLK evolution

$$N\left(\mathbf{x} - \mathbf{y}, \frac{1}{2}(\mathbf{x} + \mathbf{y}), x\right) = 1 - \text{Tr}\left[V_x(\mathbf{x})V_x^{\dagger}(\mathbf{y})\right]/N_c$$

• Fix parameters at one energy (x_0) ;

predict at higher energies $(x < x_0)$

Mäntysaari: Tue 9:40



 $x = 10^{-4}$

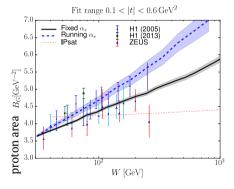
 $W=680~{\rm GeV}_{12}$

DIS input for p-A

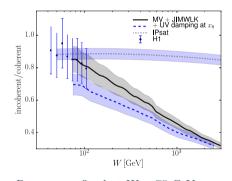
- $x = 10^{-2}$
- However there are difficulties:
 - ▶ Gluon emission kernel is scale invariant ~ Coulomb tail Introduce non-perturbative IR cut-off m
 - ▶ Evolution speed in LO JIMWLK Reduce α_s or include running coupling corrections
 - ▶ Large dipoles

Use observables not sensitive to large r; or/and set $N(r > R_p) \to 1$ for large r^2 as in IP-SAT Non-perturbative physics: Coulomb tails & large dipoles?!

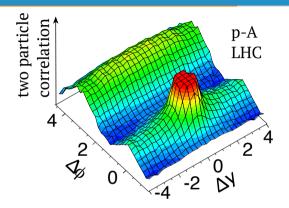
W = 75 GeV



 $x = 10^{-4}$


DIS input for p-A

- \triangleright Size fixed at W = 30 GeV
- ▶ Evolution speed fixed by charm-F2


 \triangleright Running α_s : faster evolution at long distances

- ▶ Incoherent/coherent cross section ratio compatible with H1 data
- ▶ Insensitive to contributions from large dipoles

- \triangleright Parameters fixed at W = 75 GeV
- ▶ Significant deviation from IP-SAT model

The ridge in small systems

What is the origin of apparent collectivity?
What do initial state correlations at weak coupling tell us?

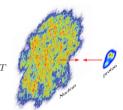
Armesto: Th 9:20 Mace: Th 9:40

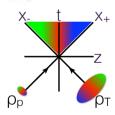
Long range rapidity correlations and the ridge: analytics

• p/d/ He^3 -A in dilute-dense approximation: $\rho_p(k)/k^2 \ll 1$

$$\frac{dN}{d^2k}[\rho_p, \rho_T] \sim g^2 \rho_p^2 f_1(\rho_T) + g^4 \rho_p^3 f_2(\rho_T) + \dots; \frac{d^2N}{d^2k_1 d^2k_2} = \left\langle \frac{dN}{d^2k_1} \frac{dN}{d^2k_2} \right\rangle_{p,T}$$

- Rather simple structure of strict dilute-dense limit $g^2 \rho_p^2 f_1(\rho_T)$ is amendable to analytical analysis under reasonable approximation
- ◆ Two-particle **correlated** production
 - \triangleright Bose enhancement in projectile, suppressed by $1/N_c^2$
 - \triangleright HBT correlations, suppressed by $1/N_c^2$
 - ▶ Classical effects (a-la domains), suppressed by

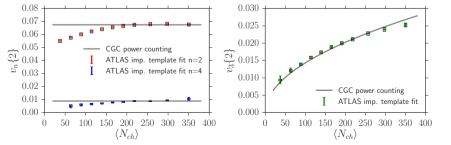

 $1/N_c^2$ and by $1/S_{\perp}$ of the projectile



Armesto: Th 9:20

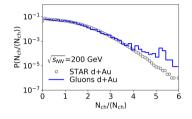
Mace: Th 9:40

• To kill all of it, take the limit $N_c \to \infty$ and recover "IP-Jazma" (1808.01276)

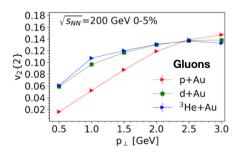


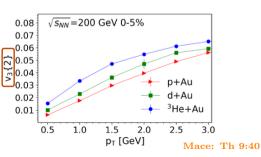
Long range rapidity correlations and the ridge: analytics

- ♦ Tour de force analytical calculation: three-gluon correlations function
- ◆ Although expressions are complicated, Emerging structure of fully correlated production is transparent:
 - ▶ HBT of three gluons
 - ▶ Bose Enhancement of 3 gluons in projectile
 - ▶ HBT of 2 gluons + Bose Enhancement in projectile

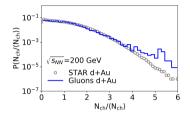

 \uparrow Armesto: Th 9:20; Mace: Th 9:40 \downarrow

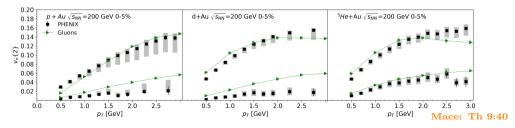
• Approximate scaling with multiplicity in p-A: $v_{\text{even}}\{2\} \sim N_{\text{ch}}^0 \& v_{\text{odd}}\{2\} \sim N_{\text{ch}}^{1/2}$




Long range rapidity correlations and the ridge: numerics

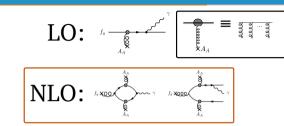
- ♦ Numerical implementation:
 - ▶ Data-guided approach similar to IP-Glasma model
 - ▶ Nucleon position fluct. both in projectile and target
 - ▶ Subnucleonic color charge density by IP-SAT
 - \triangleright Parameters are fixed by DIS + $P(N_{\rm ch})$ for d-A


System size dependence at RHIC captured by CGC/ Reasonable agreement with experiment



Long range rapidity correlations and the ridge: numerics

- ♦ Numerical implementation:
 - ▶ Data-guided approach similar to IP-Glasma model
 - \triangleright Nucleon position fluct. both in projectile and target
 - ▶ Subnucleonic color charge density by IP-SAT
 - \triangleright Parameters are fixed by DIS + $P(N_{\rm ch})$ for d-A



System size dependence at RHIC captured by CGC/ Reasonable agreement with experiment

Particle production: $q + \bar{q} + photon$

- ◆ Leading order: quark scatters off target field and produce photon
- Next to leading order: gluon produces $q+\bar{q}$; emission of photon
- Also includes correlated dijet-photon production

$$\begin{split} \frac{\mathrm{d}\sigma^{\mathrm{NLO}}}{\mathrm{d}^{2}\boldsymbol{k}_{\gamma\perp}\mathrm{d}\eta_{\gamma}} &= S_{\perp} \sum_{f} \frac{\alpha_{e}\alpha_{S}N_{c}^{2}q_{f}^{2}}{64\pi^{4}(N_{c}^{2}-1)} \int_{\eta_{q}\eta_{p}} \int_{\boldsymbol{q}_{\perp}\boldsymbol{p}_{\perp}\boldsymbol{k}_{1\perp}\boldsymbol{k}_{\perp}} \underbrace{\frac{\varphi_{p}(Y_{p},\boldsymbol{k}_{1\perp})}{\boldsymbol{k}_{1\perp}^{2}}}_{\tilde{\mathcal{N}}_{t},Y_{t}}(\boldsymbol{k}_{\perp}) \tilde{\mathcal{N}}_{t,Y_{t}}(\boldsymbol{P}_{\perp}-\boldsymbol{k}_{1\perp}-\boldsymbol{k}_{\perp}) \\ &\times \left[2\tau_{g,g}(\boldsymbol{k}_{1\perp};\boldsymbol{k}_{1\perp}) + 4\tau_{g,q\bar{q}}(\boldsymbol{k}_{1\perp};\boldsymbol{k}_{\perp},\boldsymbol{k}_{1\perp}) + 2\tau_{q\bar{q},q\bar{q}}(\boldsymbol{k}_{\perp},\boldsymbol{k}_{1\perp};\boldsymbol{k}_{\perp},\boldsymbol{k}_{1\perp})\right], \end{split}$$

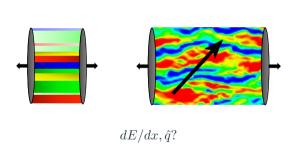
unintegrated gluon distribution

- ▶ NLO dominates at high energy due to large gluon density
- \triangleright Large $k_{\perp} \gg Q_s$ to recover k_{\perp} factorization

▶ and collinear factorization

Target forward dipole

Particle production: $q + \bar{q} + photon$

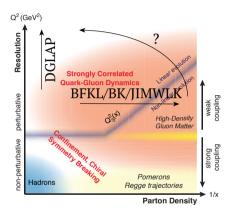


- ▶ Proton-proton collisions
- ▶ Saturation corrections are about 10%
- ▶ Expected to be larger in p-A!

- \triangleright k-factor to match this NLO calculation to experiment = 2.4 \leadsto need for NNLO
- \triangleright Explore similar processes in DIS first: Inclusive photon+dijet (NLO+NLL)

Non-equilibrium transport of heavy quarks through Glasma

- ♦ HIC: according to CGC collision induces Glasma field strong mostly classical chromodynamic fields.
- ♦ How do heavy quarks propagate through the Glasma?
- ♦ Fokker-Planck equation of heavy quarks interacting with classical chromodynamic fields



Glasma
$$\begin{cases}
-\frac{dE}{dx} = 14 \cos^2 \theta \quad \left[\frac{\text{GeV}}{\text{fm}} \right] \\
\hat{q} = 33 \left(\sin^2 \theta + \sin \theta \right) \quad \left[\frac{\text{GeV}^2}{\text{fm}} \right]
\end{cases}$$

Typical values extracted from experiment
$$\begin{cases} -\frac{dE}{dx} = 1.0 - 3.0 & \left[\frac{\text{GeV}}{\text{fm}} \right] \\ \hat{q} = 1.5 - 7.0 & \left[\frac{\text{GeV}^2}{\text{fm}} \right] \end{cases}$$

Mrówczyński: Tue 12:05

Can we combine non-linear small x evolution and DGLAP?

- ♦ Account for one hard scattering a first step towards unifying JIMWLK with DGLAP?!
- ◆ Previously: double integral equation that contains both NLx BFKL and NLO DGLAP (Ciafaloni, Colferai, Salam, Stasto, ...)

Conclusions

♦ A lot of new results/significant progress in initial state and pre--equilibrium dynamics since Hard Probes '16

♦ Reaching new precision: NLO+NLL in DIS with heavy quarks and photons

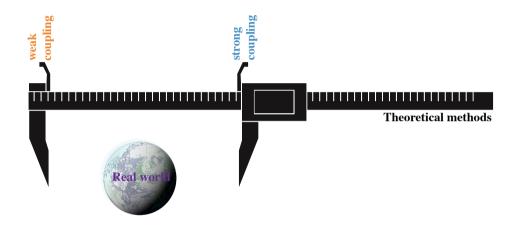
◆ Practical implementations for QCD effective kinetic theory, two particle correlations in dilute-dense CGC, and JIMWLK evolution in DIS

 \blacklozenge A few new ideas put forward; a few old puzzle resolved & a lot of new goals set

What is the origin of high multipliicty events

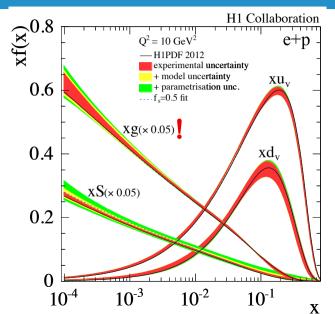
- ♦ Saturation/CGC: gluon multiplicity fluctuations in projectile
 - Valence color charge fluctuations in (non-local) MV model
 → Liouville potential
 - \triangleright Small x evolution of the above
 - \rightarrow increasing width of the potential
 - $\triangleright \approx$ negative binomial probability distr. for produced gluons
- ◆ Gluon fragmentation → multiplicity fluctuations?!
- ♦ What does strong coupling SYM tells us?
 - \triangleright Single point functions a-la $\langle T^{\mu\nu} \rangle$ are not sufficient
 - $\,\triangleright\,$ Two point functions are rare... $\langle T^{00}(x)T^{00}(y)\rangle$

Theory approaches to particle production/scattering


▶ Saturation/CGC framework:

highly occupied QCD at weak coupling

 $a \to 0$, $aA \sim 1$


talks by Armesto, Jalilian-Marian, Mäntysaari, Mace, Mazeliauskas, Mrowczynski, Venugopalan, ▶ Holography: duality between strongly coupled SYM and classical gravity in AdS $a^2N_c \to \infty, N_c \to \infty$

Theory grip on reality

- ♦ At best, theoretical methods can only bracket real world
- ♦ Some degree of extrapolation/modelling is required

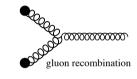
Gluon density at small x

Evolution equations:radiation dominated regime

• BFKL equation resums powers of $\alpha_s \ln \frac{1}{x}$; no multiple rescattering

$$\frac{\partial}{\partial \ln \frac{1}{x}} N(x, k^2) = \alpha_s N_c \ K_{BFKL} \otimes N(x, k^2)$$

I. Balitsky, V. Fadin, E. Kuraev, & L. Lipatov, '78


 \bullet Emission of new gluons as x decreases; the emission is proportional to N

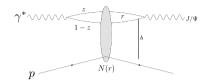
• Gluon density increases without bound violating quantum mechanical black disk limit for total cross section

Evolution equations: nonlinear regime

• At small x, parton recombination modifies evolution (large N_c)

$$\frac{\partial}{\partial \ln \frac{1}{x}} N(x, k^2) = \alpha_s N_c \ K_{\text{BFKL}} \otimes N(x, k^2) - \alpha_s N_c \ N^2(x, k^2)$$

I. Balitsky, '96; Yu. Kovchegov '99


 \bullet Emission of new gluons as x decreases; emission is proportional to N

 \bullet Recombination \sim reduction of gluon number in wave function

Probe of the geometry: exclusive J/Ψ production

High energy factorization:

- $\mathbf{q} \quad \gamma^* \rightarrow q \overline{q} \colon \mathbf{\Psi}^{\gamma}(\mathbf{r}, \mathbf{Q}^2, \mathbf{z})$
- $q\bar{q}$ dipole scatters elastically Amplitude N

Diffractive scattering amplitude

$$\mathcal{A}^{\gamma^* p o Vp} \sim \int \mathrm{d}^2 b \mathrm{d}z \mathrm{d}^2 r \Psi^{\gamma *} \Psi^V(r, z, Q^2) \mathbf{e}^{-\mathbf{i} \mathbf{b} \cdot \Delta} N(r, x, \mathbf{b})$$

- Impact parameter is the Fourier conjugate of the momentum transfer → Access to the spatial structure
- Total F_2 : forward elastic scattering amplitude ($\Delta = 0$) for $V = \gamma$ (same dipole amplitude)

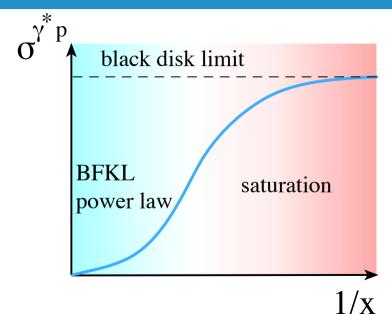
Average over configurations

Coherent diffraction:

Target proton remains in the same quantum state Probes average density

$$\frac{\mathrm{d}\sigma^{\gamma^* p \to Vp}}{\mathrm{d}t} \sim |\mathcal{A}^{\gamma^* p \to Vp}|^2$$

Incoherent/target dissociation:


Total diffractive — coherent cross section Target breaks up Good, Walker, PRD 120, 1960 Miettinen, Pumplin, PRD 18, 1978 Kovchegov, McLerran, PRD 60, 1999 Kovner, Wiedemann, PRD 64, 2001

$$\frac{\mathrm{d}\sigma^{\gamma^*p\to Vp^*}}{\mathrm{d}t} \sim \langle |\mathcal{A}^{\gamma^*p\to Vp}|^2 \rangle - ||\mathcal{A}^{\gamma^*p\to Vp}||^2$$

Variance, measures the amount of fluctuations!

: average over target configurations [N(r, b)]

BK and Black Disk Limit

