

Shining a Light on the QGP -Electroweak Probes Experimental Summary

Friederike Bock, CERN Hard Probes 2018, Aix-les-Bains, France

Run:265335

F. Bock (CERN)

Electroweak Probes

Probing the QGP with Direct Photons and Di-Leptons

Can we determine the point where the QGP switches on?

F. Bock (CERN)

Electroweak Probes

Direct Photon in $pp(\bar{p})$ collisions

CERN

Let's start with the base-line!

- Large variety of results available from 19.4 GeV 13 TeV for (isolated) direct photons
 - \rightarrow New results at $\sqrt{s}=0.2,~2.76,~7$ & 8 TeV
- Decent agreement at large \sqrt{s} & high $p_{\rm T}$ between pQCD & data
- All pp data seem to align on a common x_T -curve within $\pm (20 50)\%$, if scaled with $(\sqrt{s})^n$ with n = 4.5
- Intriguing number:
- \rightarrow Pure vector gluon exchange: n = 4
- ightarrow Scale breaking effects in QCD could increase this number
- → Closer look needed if data could be described even better by slightly different **n** - could help pin down prompt photon contribution even at low p_{T}

Direct Photon in $pp(\bar{p})$ collisions

Let's start with the base-line!

- Large variety of results available from 19.4 GeV 13 TeV for (isolated) direct photons
 - \rightarrow New results at $\sqrt{s}=0.2,~2.76,~7$ & 8 TeV
- Decent agreement at large \sqrt{s} & high $p_{\rm T}$ between pQCD & data
- All pp data seem to align on a common x_T -curve within $\pm (20 50)\%$, if scaled with $(\sqrt{s})^n$ with n = 4.5
- Intriguing number:
- \rightarrow Pure vector gluon exchange: n = 4
- ightarrow Scale breaking effects in QCD could increase this number
- \rightarrow Closer look needed if data could be described even better by slightly different **n** could help pin down prompt photon contribution even at low p_{τ}

Direct Photon in $pp(\bar{p})$ collisions

Let's start with the base-line!

- Large variety of results available from 19.4 GeV 13 TeV for (isolated) direct photons
 - \rightarrow New results at $\sqrt{s}=0.2,~2.76,~7$ & 8 TeV
- Decent agreement at large \sqrt{s} & high $p_{\rm T}$ between pQCD & data
- All pp data seem to align on a common x_T -curve within $\pm (20 50)\%$, if scaled with $(\sqrt{s})^n$ with n = 4.5
- Intriguing number:
- \rightarrow Pure vector gluon exchange: n = 4
- ightarrow Scale breaking effects in QCD could increase this number
- \rightarrow Closer look needed if data could be described even better by slightly different **n** could help pin down prompt photon contribution even at low $p_{\rm T}$

(Virtual) Direct Photons in pp at low p_{τ}

• New: First results on virtual photon measurement in pp collisions at 7 TeV & 13 TeV

- No large thermal component expected O(0.1-1%) in pp
- Similar size of uncertainties of real & virtual photon measurements (O(5%)) at LHC at low p_{T}
- Measuring $\gamma_{\rm dir}$ for low $p_{\rm T}$ @ LHC energies very challenging @ RHIC energies possible for $p_{\rm T} > 1.5~{\rm GeV}/c$

F. Bock (CERN)

(Virtual) Direct Photons in pp at low $p_{_{T}}$

- New: First results on virtual photon measurement in pp collisions at 7 TeV & 13 TeV
- No large thermal component expected O(0.1-1%) in pp
- Similar size of uncertainties of real & virtual photon measurements (O(5%)) at LHC at low p_{T}
- Measuring $\gamma_{\rm dir}$ for low $p_{\rm T}$ @ LHC energies very challenging @ RHIC energies possible for $p_{\rm T} > 1.5~{\rm GeV}/c$

Direct Photons in p–Au at RHIC at low p_{τ}

d-Au MB

Increasing the system size

- New: Measured direct photon excess ratio in MB & 0-5% p-Au collisions at $\sqrt{s_{NN}} = 200$ GeV
- Reevaluated the pp reference data including external conversions in fit
- No clear excess yield at low p_{τ} seen in d-Au MB & p-Au MB collisions with respect to pp, well described by pQCD calculation
- Excess of low $p_{\rm T}$ direct photon with respect to pp seen for 0-5% central collisions
- Indication for thermal contribution also in central p-Au collisions

Direct Photons in p–Au at RHIC at low p_{τ}

Increasing the system size

- New: Measured direct photon excess ratio in MB & 0-5% p-Au collisions at $\sqrt{s_{_{\rm NN}}} = 200 \text{ GeV}$
- Reevaluated the pp reference data including external conversions in fit
- No clear excess yield at low p_{τ} seen in d-Au MB & p-Au MB collisions with respect to pp, well described by pQCD calculation
- Excess of low p_T direct photon with respect to pp seen for 0-5% central collisions
- Indication for thermal contribution also in central p-Au collisions

F. Bock (CERN)

Direct Photons in p–Au at RHIC at low p_{τ}

F. Bock (CERN)

Increasing the system size

- New: Measured direct photon excess ratio in MB & 0-5% p-Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV
- Reevaluated the pp reference data including external conversions in fit
- No clear excess yield at low p_{τ} seen in d-Au MB & p-Au MB collisions with respect to pp, well described by pQCD calculation
- Excess of low p_T direct photon with respect to pp seen for 0-5% central collisions
- Indication for thermal contribution also in central p-Au collisions

Electroweak Probes

Direct Photons in p–Pb at LHC at low $p_{\scriptscriptstyle \rm T}$

How about at LHC?

- Combination of 4 reconstruction techniques via BLUE method
- Individual sys uncertainties O(5-10%), combined total O(4-5%)
- Upper limits at 90% C.L. (arrows) determined where R_{γ} with total uncertainties consistent with unity
- 0-20% central collisions don't show a significant excess
- NLO & thermal (Shen et al.) calculations consistent with measurements

E. Bock (CERN)

Theory calculations from: W. Vogelsang $_{\rm (CT10,nCTEQ15,EPPS16/GRV),}$ J.F. Paquet $_{\rm (CTEQ6.1M/BFG),}$ C. Shen

Direct Photons in p–Pb at LHC at low $p_{\text{\tiny T}}$

How about at LHC?

- Combination of 4 reconstruction techniques via BLUE method
- Individual sys uncertainties O(5-10%), combined total O(4-5%)
- Upper limits at 90% C.L. (arrows) determined where R_{γ} with total uncertainties consistent with unity
- 0-20% central collisions don't show a significant excess
- NLO & thermal (Shen et al.) calculations consistent with measurements
 - Theory calculations from:

W. Vogelsang (CT10, nCTEQ15, EPPS16/GRV), J.F. Paquet (CTEQ6.1M/BFG), C. Shen

F. Bock (CERN)

Direct Photons in p–Pb at LHC at low $p_{\text{\tiny T}}$

How about at LHC?

- Combination of 4 reconstruction techniques via BLUE method
- Individual sys uncertainties O(5-10%), combined total O(4-5%)
- Upper limits at 90% C.L. (arrows) determined where R_{γ} with total uncertainties consistent with unity
- 0-20% central collisions don't show a significant excess
- NLO & thermal (Shen et al.) calculations consistent with measurements
 - Theory calculations from:

W. Vogelsang (CT10, nCTEQ15, EPPS16/GRV), J.F. Paquet (CTEQ6.1M/BFG), C. Shen

F. Bock (CERN)

Direct Photon Spectra at RHIC - BES & Cu-Cu

- Spectra normalized by $(dN_{ch}/d\eta)^{\alpha}$, where $\alpha = 1.25 \pm 0.02$ obtained from simultaneous fit to N_{coll} vs $dN_{ch}/d\eta$ for all collision systems
- Spectra follow similar behavior at low p_T

Electroweak Probes

Direct Photon Spectra at RHIC - BES & Cu-Cu

Direct Photon Spectra at RHIC - BES & Cu-Cu

Direct Photon Spectra - N_{ch} scaling?

Why does the low $p_{\rm T}$ direct photon yield appear to scale with $(dN_{ch}/d\eta)^{\alpha}$?

Direct Photon Spectra - N_{ch} scaling?

CERN

Why does the low $p_{\rm T}$ direct photon yield appear to scale with $(dN_{ch}/d\eta)^{\alpha}$?

Direct Photon Spectra - N_{ch} scaling?

- Story not as clear, when looking at STAR data in addition
- Theoretically not easy to understand scaling across different $\sqrt{s_{_{\rm NN}}}$
- Prompt and thermal photons should scale with different slopes at one $\sqrt{s_{\rm NN}}$
- Can we learn something about admixture from different p_{τ} cuts?

Direct Photon Spectra - N_{ch} scaling?

Why does the low p_{T} direct photon yield appear to scale with $(dN_{ch}/d\eta)^{\alpha}$?

- Story not as clear, when looking at STAR data in addition
- Theoretically not easy to understand scaling across different $\sqrt{S_{NN}}$
- Prompt and thermal photons should scale with different slopes at one $\sqrt{S_{NN}}$
- Can we learn something about admixture from different p_{T} cuts?

Thermal photons

Electroweak Probes

103

Slopes

Direct Photon Yield and Flow - At the LHC

• Central points for direct photon yield and $v_2^{\gamma,\rm dir}$ underestimated by most theoretical calculations by factors of 2-5

F. Bock (CERN)

Direct Photon Yield and Flow - At the LHC

Direct Photon Yield and Flow - Comparison to PHENIX

p_ (ĞeV/c)

Direct Photon Yield and Flow - Comparison to PHENIX

p_ (ĞeV/c)

10

Direct Photon Yield and Flow - Comparison to PHENIX

• New: STAR - First results on $\mu^+\mu^-$ in pp & p-Au @ 200 GeV using MTD & DNN

- New techniques developed to cope with low purity/statistic in $\mu^+\mu^$
 - ightarrow may benefit future dilepton analysis also in e^+e^-
- \bullet Low muon purity in Au+Au collisions makes $\mu^+\mu^-$ measurements very challenging
- New datasets for STAR that are ideal for low mass and continuum e^+e^- and/or $\mu^+\mu^-$ measurements at STAR!
 - Au+Au @ 27 GeV: ~1.5B triggered MB events
 - Au+Au @ 54 GeV: ~1.3B triggered MB events
 - Isobar (Ru+Ru and Zr+Zr) @ 200 GeV: ~3B triggered minimum bias events for each species!
 - BES Phase II: several more datasets with $\sqrt{s_{\rm NN}} \le 19.6$ GeV

- New: STAR First results on $\mu^+\mu^-$ in pp & p-Au @ 200 GeV using MTD & DNN
- New techniques developed to cope with low purity/statistic in $\mu^+\mu^$
 - ightarrow may benefit future dilepton analysis also in e^+e^-
- Low muon purity in Au+Au collisions makes $\mu^+\mu^-$ measurements very challenging
- New datasets for STAR that are ideal for low mass and continuum e^+e^- and/or $\mu^+\mu^-$ measurements at STAR!
 - Au+Au @ 27 GeV: ~1.5B triggered MB events
 - Au+Au @ 54 GeV: ~1.3B triggered MB events

Electroweak Probes

- Isobar (Ru+Ru and Zr+Zr) @ 200 GeV: ~3B triggered minimum bias events for each species!
- BES Phase II: several more datasets with $\sqrt{s_{\rm NN}} {\leq}~19.6$ GeV

• New: STAR - First results on $\mu^+\mu^-$ in pp & p-Au @ 200 GeV using MTD & DNN

- New techniques developed to cope with low purity/statistic in $\mu^+\mu^ \rightarrow$ may benefit future dilepton analysis also in e^+e^-
- Low muon purity in Au+Au collisions makes $\mu^+\mu^-$ measurements very challenging
- New datasets for STAR that are ideal for low mass and continuum e^+e^- and/or $\mu^+\mu^-$ measurements at STAR!
 - Au+Au @ 27 GeV: ~1.5B triggered MB events
 - Au+Au @ 54 GeV: ~1.3B triggered MB events
 - Isobar (Ru+Ru and Zr+Zr) @ 200 GeV: ~3B triggered minimum bias events for each species!
 - BES Phase II: several more datasets with $\sqrt{s_{\rm NN}} \le 19.6$ GeV

- New: STAR First results on $\mu^+\mu^-$ in pp & p-Au @ 200 GeV using MTD & DNN
- New techniques developed to cope with low purity/statistic in $\mu^+\mu^-$
 - \rightarrow may benefit future dilepton analysis also in e^+e^-
- \bullet Low muon purity in Au+Au collisions makes $\mu^+\mu^-$ measurements very challenging
- New datasets for STAR that are ideal for low mass and continuum e^+e^- and/or $\mu^+\mu^-$ measurements at STAR!
 - Au+Au @ 27 GeV: \sim 1.5B triggered MB events
 - Au+Au @ 54 GeV: ${\sim}1.3B$ triggered MB events
 - Isobar (Ru+Ru and Zr+Zr) @ 200 GeV: ~3B triggered minimum bias events for each species!
 - BES Phase II: several more datasets with $\sqrt{s_{_{\rm NN}}}{\leq}$ 19.6 GeV

Stay tuned!

 $\frac{1}{N_{coll}} \cdot \frac{d\sigma}{dm_{ee}} (mb \ / (GeV/c^2))$

10[£]

 10^{4}

10³

10²

10

10-

10-2

10⁻³ 10-4 10-5

3.5 2.5 1.5 Ratio to cocktail

0.5 -0.Š

ALICE

8 - 0 5 T

0.5

pp: $p_{-} > 0.2 \text{ GeV}/c$, $|\eta_{-}| < 0.8$

Pb-Pb: $p_{\pi} > 0.4 \text{ GeV}/c, |\eta_{-}| < 0.8$

Dileptons at LHC

s = 13 TeV × 3000

1.5 2 2.5 3 3.5 $m_{\rm eq}$ (GeV/ c^2)

... = 2.76 TeV. Cent. 0-10%

0.6 07 0.8 0.9

0.5

ight meson decays

 $\rightarrow e^+e^-$

> 0⁺0⁻

Total cocktail

Data

Cocktail sur

m., (GeV/c 2)

New: Low Mass di-electons in pp @ 7 & 13 TeV and Pb-Pb @ 2.76 & 5.02 TeV

- Pb-Pb @ 2.76 & 5.02 TeV:
 - Agreement of Data & cocktail (w/o vacuum ρ^0) for $150 < m_{ee} < 700 \; {\rm MeV}/c^2$
 - \rightarrow Limited sensitivity to low-mass excess due to low statistics
 - Pb-Pb 5 TeV results indicate necessity of charm suppression

- New: Low Mass di-electons in pp @ 7 & 13 TeV and Pb-Pb @ 2.76 & 5.02 TeV
- Pb-Pb @ 2.76 & 5.02 TeV:
 - Agreement of Data & cocktail (w/o vacuum ρ^0) for 150 $< m_{ee} <$ 700 ${\rm MeV}/c^2$
 - Pb-Pb 5 TeV results indicate necessity of charm suppression in cocktail

 10^{3}

10²

10

10-2

Dileptons at LHC

s = 13 TeV × 3000

pp: $p_{=} > 0.2 \text{ GeV}/c, |\eta_{-}| < 0.8$

Pb-Pb: $p_{\pm} > 0.4 \text{ GeV}/c, |\eta_{\pm}| < 0.8$

New: Low Mass di-electons in pp @ 7 & 13 TeV and Pb-Pb @ 2.76 & 5.02 TeV

- Pb-Pb @ 2.76 & 5.02 TeV:
 - Agreement of Data & cocktail (w/o vacuum ρ^0) for $150 < m_{ee} < 700 \; {\rm MeV}/c^2$
 - Pb-Pb 5 TeV results indicate necessity of charm suppression in cocktail • pp @ 7 & 13 TeV:

ight meson decays

> 010

> 0⁺0⁻ Total cocktail

- Constraints on $\sigma_{c\bar{c}} \& \sigma_{b\bar{b}}$
- Enhanced di-lepton production in 13 TeV high mult events consistent with cocktail expectations
 - \rightarrow Still statistics limited
- Extracted upper limits on $\gamma_{\rm dir}$ production

More data to come soon!

E. Bock (CERN)

Light-by-Light Scattering in Heavy Ion collisions

Can we test QED in these collisions?

Light-by-Light Scattering in heavy ion collisions

Evidence for light-by-light scattering in UPC HI collisions!

Light-by-Light Scattering in heavy ion collisions

Ph^e

scattering in UPC HI collisions!

Light-by-Light Scattering in heavy ion collisions

Ph^e

Evidence for light-by-light scattering in UPC HI collisions!

E. Bock (CERN)

Electroweak Probes

Light-by-Light Scattering in heavy ion collisions

Evidence for light-by-light scattering in UPC HI collisions!

Run: 287038 Event: 71765109 2015-11-30 23:20:10 CEST

$\mu^{\pm}\mu^{-}$ as probes of the magnetic fields?

F. Bock (CERN)

Electroweak Probes

Evidence of Light-by-Light scattering in 5.02 TeV Pb-Pb

- Evidence of LbL scattering: ATLAS 4.4(3.8) σ & CMS 4.1 (4.4) σ observed (expected)
- Measured fiducial cross section: ATLAS $\sigma_{fid} = 70 \pm 24 \text{ (stat.)} \pm 17(\text{syst}) \&$ CMS $\sigma_{fid} = 120 \pm 46 \text{ (stat)} \pm 4 \text{ (th) nb}$
- New: Axion limits from CMS
- ightarrow No significant excess in $m_{\gamma\gamma}$ distribution
- Competitive limits on axion-like particles

Evidence of Light-by-Light scattering in 5.02 TeV Pb-Pb

- Evidence of LbL scattering: ATLAS 4.4(3.8) σ & CMS 4.1 (4.4) σ observed (expected)
- Measured fiducial cross section: ATLAS $\sigma_{fid} = 70 \pm 24$ (stat.) ± 17 (syst) & CMS $\sigma_{fid} = 120 \pm 46$ (stat) ± 4 (th) nb
- New: Axion limits from CMS
- \rightarrow No significant excess in $m_{\gamma\gamma}$ distribution
- \rightarrow Competitive limits on axion-like particles.

Di-lepton UPC events in non UPC collisions

Di-lepton UPC events in non UPC collisions

10

10-1

10⁻³ 10⁻⁵ 10⁻⁷ 10⁻⁹

10-11

 $dN/dp_T ((GeV/c)^{-1})$

Centrality: 60-80%

Open: U+U 193 GeV

STAR

0.2

0.4

p_ (GeV/c)

Solid: Au+Au 200 GeV

● ○ 0.4-0.76 GeV/c² ★☆ 0.76-1.2 GeV/c² ×10⁻²

♦ ◊ 1.2-2.6 GeV/c² ×10⁻⁴

Au+Au Cocktail

p_r^e>0.2 GeV/c, |h^e|<1, |y^{ee}|<1

0.8

0.6

Di-lepton UPC events in non UPC collisions

Multiple ways to look at these events:

- a) Di-lepton measurements in peripheral events
 - $\rightarrow~$ Excess yield in peripheral events above hadronic cocktail
 - ightarrow Excess concentrated at low $p_{
 m T}$ for all m_{ee}
 - $\rightarrow~p_{\rm T}^2$ distribution widens, not described by models
- b) Search for UPC like $\mu\mu$ -events in A-A events & do template fits \rightarrow Such events found in all centralities
 - Acoplanarity widens for more central events, can't be explained by event generators

Di-lepton UPC events in non UPC collisions

Multiple ways to look at these events:

- a) Di-lepton measurements in peripheral events
 - $\rightarrow~$ Excess yield in peripheral events above hadronic cocktail
 - ightarrow Excess concentrated at low $p_{
 m T}$ for all m_{ee}
 - $\rightarrow~p_{\rm T}^2$ distribution widens, not described by models
- b) Search for UPC like $\mu\mu\text{-events}$ in A-A events & do template fits
 - $\rightarrow~$ Such events found in all centralities
 - $\rightarrow\,$ Acoplanarity widens for more central events, can't be explained by event generators

10-1

10-4

10-7

10-9

10-11

 $dN/dp_T ((GeV/c)^{-1})$ 10 Centrality: 60-80%

Open: U+U 193 GeV

STAR

0.2

04

Solid: Au+Au 200 GeV

● ○ 0.4-0.76 GeV/c² ★☆ 0.76-1.2 GeV/c² ×10⁻²

♦ ◊ 1.2-2.6 GeV/c² ×10⁻⁴

Au+Au Cocktail

p_e>0.2 GeV/c, |he|<1, |yee|<1

0.8

0.6

Di-lepton UPC events in non UPC collisions

Multiple ways to look at these events:

- Di-lepton measurements in peripheral events a)
 - \rightarrow Excess yield in peripheral events above hadronic cocktail
 - \rightarrow Excess concentrated at low $p_{\rm T}$ for all m_{ee}
 - $\rightarrow p_{\rm T}^2$ distribution widens, not described by models
- b) Search for UPC like $\mu\mu$ -events in A-A events & do template fits
 - \rightarrow Such events found in all centralities
 - Acoplanarity widens for more central events, can't be explained by event \rightarrow generators

Measurements indicate deflection of the leptons in these events Can we measure the strength of the source?

Isolated Photons as calibration & tagging objects for jet modification studies in p-A and A-A collisions

- New: Base-line measurements in pp & p-Pb 5 TeV (ALICE)
- ALICE: Usage of fast read-out cluster with only ITS, EMCal & PHOS and tracking based purely on ITS in pp & p-Pb to increase inspected luminosity
- Access to intermediate photon p_{T} triggered correlation (10-40 GeV/c) functions even @ LHC energies
- No significant modification of jet fragmentation observed in p-A collisions

Modification of jet properties in Pb-Pb collisions

New: γ +jet $p_{\rm T}$ -balance & γ -tagged jet FF from ATLAS

- pp-like peaked x_{Jγ} in peripheral Pb-Pb, smeared in central Pb-Pb
- $\rightarrow\,$ Variation in jet-by-jet E-loss
- $\gamma\text{-tagged}$ jet frag. functions different modification in central evts. than inclusive jets

 ${}^{\mathbf{x}_{\mathbf{y}_{\mathrm{f}}}}$ New: ξ_{T}^{γ} & gamma-tagged Jet shape from CMS

- Central PbPb collisions \rightarrow enhancement of low- p_{τ} part. and a depletion of high- p_{τ} part. ξ_T^{γ} modified stronger compared to ξ_{jet}
- Larger enhancement at large r & Smaller depletion at intermediate r compared to di-jets
- \rightarrow Increased quark fraction (70-80%)?
- → Lower jet p threshold (higher fraction of quenched jets)?

Modification of jet properties in Pb-Pb collisions

New: γ +jet p_{τ} -balance & γ -tagged jet FF from ATLAS

- pp-like peaked x_{Jγ} in peripheral Pb-Pb, smeared in central Pb-Pb
- $\rightarrow\,$ Variation in jet-by-jet E-loss
- $\gamma\text{-tagged}$ jet frag. functions different modification in central evts. than inclusive jets

New: ξ^{γ}_{T} & gamma-tagged Jet shape from CMS

- Central PbPb collisions \rightarrow enhancement of low- p_{T} part. and a depletion of high- p_{T} part. ξ_{T}^{γ} modified stronger compared to ξ_{jet}
- Larger enhancement at large r & Smaller depletion at intermediate r compared to di-jets
- \rightarrow Increased quark fraction (70-80%)?
- → Lower jet p threshold (higher fraction of quenched jets)?

Photons and Bosons as probes for the initial state & scaling properties

What can we learn about the scaling properties when going from pp \rightarrow p-A \rightarrow A-A from γ , Z&W spectra?

Isolated direct photon measurement in p–Pb collisions at $\sqrt{s_{\rm NN}} = 8$ TeV by ATLAS

- *N_{coll}* scaling works at mid rapidity
- Prompt photon production at large p_τ in forward and backward region could constrain nPDFs & energy loss scenarios significantly
- Current precision not yet sufficient to do so
- Slight preference for no energy loss in p–Pb collisions

Sensitivity of W^{\pm} & Z⁰ production on nPDFs & N_{coll}

ightarrow Stronger constraints on nPDFs than previous measurements

Electroweak Probes

- New: Improved pp reference for W^{\pm} & Z^0 & updated $R_{\rm AA}$
 - High-precision measurement: unc. related to EW bosons smaller than norm. unc.
 - \rightarrow Can we replace R_{AA} for other hard probes with Z_{AA} ?

Sensitivity of W^{\pm} & Z⁰ production on nPDFs & N_{coll}

- \bullet New: Differential study of W $^\pm$ production in p-Pb collisions
- $\rightarrow\,$ Stronger constraints on nPDFs than previous measurements
- New: Improved pp reference for W[±] & Z⁰ & updated R_{AA}
 High-precision measurement: unc. related to EW bosons smaller than norm. unc.
 - \rightarrow Can we replace R_{AA} for other hard probes with Z_{AA} ?

Sensitivity of W^{\pm} & Z⁰ production on nPDFs & N_{coll}

Data, statistical uncertainty

p+p 2015, 24.7 pb

(S_{NN} = 5.02 TeV

than norm. unc.

10.90% Controlit

Data, systematic uncertainty

• Established: $W^{\pm} \& Z^0$ can serve as calibration probe for N_{even}

 \rightarrow Stronger constraints on nPDFs than previous measurements

• New: Differential study of W^{\pm} production in p-Pb collisions

• New: Improved pp reference for W^{\pm} & Z^{0} & updated R_{AA}

 \rightarrow Can we replace R_{AA} for other hard probes with Z_{AA} ?

High-precision measurement: unc. related to EW bosons smaller

 $Z_{\rm AA} = \frac{N_{\rm AA}^X \cdot \sigma_{\rm pp}^Z}{N_{\rm A}^Z \cdot \sigma^X}$

ATLAS Preliminar

0-10% Centrality

Luminosity uncertainty

Thanks to all speakers & the organizers for making this conference possible!

Summary of talks from:

Peter Alan Steinberg Shuai Yang Dennis Perepelitsa Kaya Tatar Jean-Francois Paquet Nicolas Schmidt Martin Spousta Alberto Caliva Amal Sarkar Yeonju Go Jeremi Niedziela Alexandre Lebedev Nihar Sahoo Miguel Arratia Munoz Norbert Novitzky Axel Drees James Brandenburg Hyunchul Kim Jakub Kremer

BACKUP

Direct Photons in pp at LHC at low $p_{\scriptscriptstyle \rm T}$

- Systematic uncertainties of individual meas.
 - \rightarrow dominated by $p_{\rm T}\text{-}independent$ material unc. of 4.5% PCM, 2.8% EMC & global E-scale unc. 3% PHOS
- Combination of 3 reconstruction techniques via BLUE method
- NLO prediction plotted as

 $\textit{R}_{ extsf{NLO}} = 1 + (\gamma_{ extsf{dir}}^{ extsf{NLO}} \cdot \textit{N}_{ extsf{Coll}}) / \gamma_{ extsf{dec}}$

• Upper limits at 90% C.L. (arrows) determined where R_{γ} with total uncertainties consistent with unity

Direct Photons in pp at LHC at low $p_{\scriptscriptstyle \rm T}$

- \rightarrow dominated by $p_{\rm T}\text{-}independent} material unc. of 4.5% PCM, 2.8% EMC & global E-scale unc. 3% PHOS$
- Combination of 3 reconstruction techniques via BLUE method
- NLO prediction plotted as
 - $\textit{R}_{ extsf{NLO}} = 1 + (\gamma_{ extsf{dir}}^{ extsf{NLO}} \cdot \textit{N}_{ extsf{Coll}}) / \gamma_{ extsf{dec}}$
- Upper limits at 90% C.L. (arrows) determined where R_γ with total uncertainties consistent with unity

Constraints to FF from RHIC

- Data favor BFG II FF over BFG I and GLV
- $\rightarrow\,$ BFG II FF has largest gluon contribution

10⁻¹

5

25

20

15

p_{_} (GeV)

PHENIX with stat, error

10

Direct Photons in pp at LHC at high $p_{\text{\tiny T}}$

- More differential data available from ATLAS & CMS for inclusive direct photon production at 7,8 & 13 TeV (isolated)
- Reasonable agreement with different pQCD calculations & event generators
- New results on isolated γ + N jet production test pQCD up to O($\alpha_{em} \alpha s^4$)

F. Bock (CERN)

I/N, dN₃/dx₃

0.5

Direct Photons in pp at LHC at high p_{τ}

600 700 900

(c)

m^{γ-jet1} [GeV]

0.6

(d)

Direct Photons in pp at LHC at high $p_{\text{\tiny T}}$

- More differential data available from ATLAS & CMS for inclusive direct photon production at 7,8 & 13 TeV (isolated)
- Reasonable agreement with different pQCD calculations & event generators
- New results on isolated γ + N jet production test pQCD up to O($\alpha_{\it em}\alpha s^4)$

Direct Photons in d-Au at RHIC

- Measured direct photon excess ratio in d–Au collisions at $\sqrt{s_{_{\rm NN}}}=200~{\rm GeV}$ over wide $p_{_{\rm T}}$ range
- Small hint at suppression at high $p_{\rm T},$ statistical precision not sufficient
- $\rightarrow R_{dA}$ slightly better described if Cronin, isospin and shadowing effect are included
- No significant low $p_{T} R_{dA}$

Direct Photon Spectra in Au-Au at RHIC - 200 GeV (I)

• 20-30% reduction of direct photon R_{AA} expected due to energy loss

12 14 16 18

p_T (GeV/c)

8 10

Direct Photon Spectra in Au-Au at RHIC - 200 GeV (II)

- Nearly no centrality dependence in R_{γ} , peripheral still $\sim 5\%$ excess, although not statistically significant anymore
- Excess $\approx 20\%$ in 0-20% Au–Au, systematic uncertainties O(5%)
- Strong excess above extrapolated pp measurement (green curve) seen in all centrality classes
- Slope of excess depends very little on centrality ($T_{e\!f\!f}\approx 235\pm40~{\rm MeV}/c)$

Direct Photon Spectra in Au-Au at RHIC - 200 GeV (III)

• Virtual direct photon spectrum measured by STAR at low $p_{\rm T}$ disagrees between 1-3 GeV/c by a factor 2

• BUT: Large syst. errors due to unmeasured eta contribution at low *p*_T

- Direct photon excess measured with combined PCM + PHOS in 3 centrality classes with 2010 Pb–Pb data
- R_{γ} excess at high p_{τ} for all centralities
- $\gamma^{\rm dec}$ suppressed by $\approx R_{\rm AA}^{\pi^0}$ \rightarrow larger excess in central collisions
- Low $p_{\tau}~\sim 15\%$ excess in 0-20% and $\sim 9\%$ in 20-40%
- In agreement with NLO pQCD, JETPHOX above 5 GeV/c
- No low $p_{\rm T}$ excess seen in pp collisions at same center-of-mass energy
- Scaled pp spectrum & upper limits fully consistent with Pb-Pb results

- Direct photon excess measured with combined PCM + PHOS in 3 centrality classes with 2010 Pb–Pb data
- R_{γ} excess at high p_{τ} for all centralities
- $\gamma^{\rm dec}$ suppressed by $\approx R_{\rm AA}^{\pi^0}$ \rightarrow larger excess in central collisions
- Low $p_{\rm T}~\sim 15\%$ excess in 0-20% and $\sim 9\%$ in 20-40%
- In agreement with NLO pQCD, JETPHOX above 5 GeV/c
- No low $p_{\rm T}$ excess seen in pp collisions at same center-of-mass energy
- Scaled pp spectrum & upper limits fully consistent with Pb-Pb results

- Direct photon excess measured with combined PCM + PHOS in 3 centrality classes with 2010 Pb–Pb data
- R_{γ} excess at high p_{τ} for all centralities
- $\gamma^{\rm dec}$ suppressed by $\approx R_{\rm AA}^{\pi^0}$ \rightarrow larger excess in central collisions
- Low $p_{\tau}~\sim 15\%$ excess in 0-20% and $\sim 9\%$ in 20-40%
- In agreement with NLO pQCD, JETPHOX above 5 GeV/*c*
- No low $p_{\rm T}$ excess seen in pp collisions at same center-of-mass energy
- Scaled pp spectrum & upper limits fully consistent with Pb-Pb results

F. Bock (CERN)

- Direct photon excess measured with combined PCM + PHOS in 3 centrality classes with 2010 Pb–Pb data
- R_{γ} excess at high p_{T} for all centralities
- $\gamma^{\rm dec}$ suppressed by $\approx R_{\rm AA}^{\pi^0}$ \rightarrow larger excess in central collisions
- Low $p_{\tau}~\sim 15\%$ excess in 0-20% and $\sim 9\%$ in 20-40%
- In agreement with NLO pQCD, JETPHOX above 5 GeV/*c*
- No low $p_{\rm T}$ excess seen in pp collisions at same center-of-mass energy
- Scaled pp spectrum & upper limits fully consistent with Pb-Pb results

PHENIX Direct Photon ν_2/ν_3 Results - Au-Au

arXiv:1509.07758

- Direct photon ν_2 & ν_3 comparable to that of other hadrons
- Two independent methods give comparable result
- \bullet Theory not able to reproduce large ν_2 and even less ν_3

Direct Photon Yield and Flow - At RHIC

- Large yield and large anisotropy have been observed in Au–Au at 200 GeV by PHENIX
- Challenge for theory to describe both measurements simultaneously
- Large yield from early emission?
- Large v₂ from late emission?

\Rightarrow Direct Photon Puzzle

Cocktail Simulation of Decay Photon v_2

Decay photon v_2 :

- KE_T scaling: v_2 of mesons scales with KE_T $KE_T = m_T - m = \sqrt{p_T^2 + m^2} - m$
- $\Rightarrow v_2^{\pi^0} \approx v_2^{\pi^{\pm}} (m^{\pi^0} \approx m^{\pi^{\pm}})$
- $\label{eq:constraint} \begin{array}{l} \rightarrow \ v_2 \ \text{of various mesons} \ (\mathsf{X}) \ \text{calculated via} \\ KE_{\mathcal{T}} \ (\text{quark number}) \ \text{scaling from} \ v_2^{\mathcal{K}^{\pm}} \end{array}$

$$v_{2}^{X}(p_{T}^{X}) = v_{2}^{K^{\pm}} \left(\sqrt{(KE_{T}^{X} + m^{K^{\pm}})^{2} - (m^{K^{\pm}})^{2}} \right)^{2}$$

• Decay photon v₂ from different mesons obtained from cocktail calculation

F. Bock (CERN)

\textit{v}_2^{γ} Inclusive and Decay

- $v_2^{\gamma,\text{inc}}$ measured with PCM & PHOS
- \rightarrow Corrected for BG flow from impurities [JPG 44 (2917) no. 2, 025106]
- \rightarrow Assumed to be independent
- \rightarrow Consistent, *p*-values of 0.93 (0-20%) & 0.43 (20-40%)

v_2^γ Inclusive and Decay

- $v_2^{\gamma,\text{inc}}$ measured with PCM & PHOS
- \rightarrow Corrected for BG flow from impurities $_{[\rm JPG~44~(2917)~no.~2,~025106]}$
- \rightarrow Assumed to be independent
- → Consistent, *p*-values of 0.93 (0-20%) & 0.43 (20-40%)
- $p_{\scriptscriptstyle T}~<3~GeV/{\it c:}~v_2^{\gamma,inc}=v_2^{\gamma,dec}$
- $\rightarrow~$ Theory $\sim 30-40\%$ too high
- $p_{\tau}~>3~GeV/\mathit{c}:~v_{2}^{\gamma,inc} < v_{2}^{\gamma,dec}$
- $\rightarrow \mbox{Direct photon } v_2 \mbox{ contribution with } v_2^{\rm direct} < v_2^{\rm decay}$
- $\rightarrow\,$ Mainly prompt photons

F. Bock (CERN)

Direct photon v_2 :

$$v_2^{\gamma,\mathsf{dir}} = rac{R_\gamma \cdot v_2^{\gamma,\mathsf{inc}} - v_2^{\gamma,\mathsf{dec}}}{R_\gamma - 1}$$

- $\bullet\,$ Measured R_{γ} often less than $2\sigma_{\rm sys}$ deviation from 1
- ⇒ Central value & unc. calculated using MC simulation following Bayesian approach with probability distributions of true values of $R_{\gamma}^{t}(p_{T}), v_{2}^{\gamma, \text{dec}, t}(p_{T}), v_{2}^{\gamma, \text{inc}, t}(p_{T})$ assuming R_{γ} can't be smaller unity & partially p_{T} correlated unc.
- Large direct photon v_2 for $p_T < 3 \text{ GeV}/c$ measured
- Magnitude of $v_2^{\gamma, dir}$ comparable to hadrons
- Result points to late production times of direct photons after flow is established

F. Bock (CERN)

Direct photon v_2 :

$$v_2^{\gamma,\mathsf{dir}} = rac{R_\gamma \cdot v_2^{\gamma,\mathsf{inc}} - v_2^{\gamma,\mathsf{dec}}}{R_\gamma - 1}$$

- $\bullet\,$ Measured ${\it R}_{\gamma}$ often less than $2\sigma_{\rm sys}$ deviation from 1
- ⇒ Central value & unc. calculated using MC simulation following Bayesian approach with probability distributions of true values of $R_{\gamma}^{t}(p_{T}), v_{2}^{\gamma, \text{dec}, t}(p_{T}), v_{2}^{\gamma, \text{inc}, t}(p_{T})$ assuming R_{γ} can't be smaller unity & partially p_{T} correlated unc.
- Large direct photon v_2 for $p_T < 3 \text{ GeV}/c$ measured
- Magnitude of $v_2^{\gamma, dir}$ comparable to hadrons
- Result points to late production times of direct photons after flow is established

F. Bock (CERN)

Jet observables: a quick reminder

$$\begin{aligned} \xi^{jet} &= \ln \frac{|\mathbf{p}^{jet}|^2}{\mathbf{p}^{track} \cdot \mathbf{p}^{jet}} \\ \xi_T^\gamma &= \ln \frac{-|\mathbf{p}_T^\gamma|^2}{\mathbf{p}_T^{track} \cdot \mathbf{p}_T^\gamma} \end{aligned} \tag{1}$$