

HARD PROBES 2018 Oct. 1-5, 2018 Aix-les-Bains

Office of Science

My story line

Heavy Ions collisions produce intense photon beams

Photons from the two nuclei can interact with each other – tests QED

 Photon from one nucleus can interact with other nucleus – probes nucleus, nPDFs γ+N

 Some interesting results in peripheral collisions may be explained by these same photon-induced processes – nuclear medium effects? γ+N?

... and the gluon PDFs were known for all values of x, and they all lived happily ever after. The End.

This Photo by Unknown Author is licensed under <u>CC BY-NC-ND</u>

Ultraperipheral Collisions

- Large impact parameter($b > R_1 + R_2$) \rightarrow no nuclear overlap \rightarrow no "collision" \rightarrow electromagnetic interactions dominate
- Relativistic heavy ions are intense source of quasi real photons
 - Q ~ 1/R ~ 0.06 GeV (Pb) or 0.28 GeV (p)
 - Photon flux ~ Z² from each nucleus
 - Experimentally: very low multiplicity events with small momentum transfer, rapidity gaps

γ+γ Lepton Pair Production

- Basic QED process
 - allows validation of EPA approach
 - Flux amplified by Z⁴ over pp
 - Background for other measurements (quarkonia, light-by-light)
 - Provides baseline for more central collisions
- Kinematic distributions and overall rates generally well described by Starlight generator

(S. R. Klein, J. Nystrand, S. Seger, Y. Gorbunov, J. Butterworth, Comp. Phys. Comm, 212 (2017)258.)

ee

γ+γ Light by Light scattering

Textbook quantum physics that had nevertheless not been directly observed

ATLAS discovery (https://doi.org/10.1038/NPHYS4208)

Confirmation from CMS

See talk by Niedziela

Cross sections and distributions consistent with SM expectations

HARD PROBES

γ+γ CMS: Axion-like particle search – dark matter candidate

- Exclusive diphoton final-state from resonant CP-odd axion-like particles
 - LbyL, QED and CEP considered as background in this analysis,
- No evidence for this in the 2photon signal
- → place new limits on the coupling constant

See talk by Niedziela

Photoproduction of vector mesons

- Has been extensively studied at HERA, RHIC, LHC
- Factorize into
 - photon emission and
 - interactions with nuclear target
- Allows probe of nucleus via QCD to learn about shadowing, saturation effects, nPDFs

Photoproduction of vector mesons

- Has been extensively studied at HERA, RHIC, LHC
- Factorize into
 - photon emission and
 - interactions with nuclear target
- Allows probe of nucleus via QCD to learn about shadowing, saturation effects, nPDFs
- Coherent interaction: Photon interacts with entire nucleus
 - Nucleus generally remains intact
 - Small momentum transfer: $p_T \sim \hbar/R_\Delta \sim 15 \text{ MeV}$
 - Max Photon energy $\sim \gamma \hbar/R_A \sim 3$ GeV at RHIC, 80 GeV at LHC

Photoproduction of vector mesons

- Has been extensively studied at HERA, RHIC, LHC
- Factorize into
 - photon emission and
 - interactions with nuclear target
- Allows probe of nucleus via QCD to learn about shadowing, saturation effects, nPDFs
- Coherent interaction: Photon interacts with entire nucleus
 - Nucleus generally remains intact
 - Small momentum transfer: $p_T \sim \hbar/R_A \sim 15 \text{ MeV}$
 - Max Photon energy $\sim \gamma \hbar/R_A \sim 3$ GeV at RHIC, 80 GeV at LHC
- Incoherent interaction: Photon can interact with individual nucleons
 - Nucleus generally breaks
 - Momentum transfer is biggerL $p_T \sim \hbar/R_A \sim 100 \text{ MeV}$
 - Max Photon energy $\sim \gamma \hbar/R_A \sim 20$ GeV at RHIC, 2.5 TeV at LHC

Heavy Vector Mesons: J/ψ, Y

$$\frac{\mathrm{d}\sigma^{\gamma^* A \to J/\psi A}}{\mathrm{d}t} \propto \left(xG_{\mathrm{A}}(x,Q^2)\right)^2$$

- 2-gluon exchange
- Sensitive probe of gluon GPDs
- For vector mesons,

$$x \simeq \frac{m_{J/\psi}e^{-y}}{\sqrt{s}}$$

 Measurements at different rapidities sample different values of x

Pb*

LHCb: J/Psi – first PbPb UPC measurement

- Forward detector → reach to lower x
- Cross sections consistent with ALICE in overlap

· LHCb-CONF-2018-003

Belin

s.

See talk by

γ+N CMS: Upsilon in p+Pb at 5 TeV (§ 10° 2)

 Measure cross section in W range not covered at HERA

Y+N CMS: Upsilon in p+Pb at 5 TeV

 Measure cross section in W range not covered at HERA

arXiv: 1809.11080

Fit parameters
of power-law
dependent cross
section
consistent with
HERA results,
disfavors LO calc

Y+N ATLAS: Photonuclear di-jets in 5.02 TeV PbPb

See talk by Steinberg

- Jet selection:
 - Anti- k_T , R = 0.4, $|\eta| < 4.4$
 - $p_{\mathrm{T}}^{\mathrm{lead}} > 20 \text{ GeV}, p_{\mathrm{T}}^{\mathrm{jets}} > 15 \text{ GeV}$
- Shape qualitatively described by Pythia 6 with photon flux scaled via Starlight
- Samples PDFs directly, but will need to do the detector unfolding

Pythia 8 has Photoproduction Framework

- Can be used to model photonuclear di-jets
- Automatically mixes direct and resolved jets

"direct" jet: photon participates directly

"resolved" jet: virtual photon excitation to qqbar, etc.
Depends on photon PDF as well as nPDF

- Fits HERA data well
 - Only one parameter re-tuned from pp

H1 measurement

- $E_p = 820 \text{ GeV}, E_e = 27.5 \text{ GeV}$
- $< W_{\gamma p} > \approx 200 \text{ GeV}$

[H1: Eur.Phys.J. C10 (1999) 363-372]

Photonuclear di-jets in Pythia 8

- b-integrated photon flux
- Nuclear PDFs for hard scattering
- Identical jet selection as used in ATLAS study
- Direct processes dominate for $x_A < 10^{-2}$
- Sensitive to nuclear PDF modifications

 $\gamma+N$?

Some interesting results in peripheral collisions may be explained by these same photon-induced processes

 Here hadronic interactions dominate

Y+N? BUT: Anomalous low-p_T enhancement in J/ψ in peripheral PbPb collisions

- Not explained by hadronic interactions
- Consistent with coherent photonuclear photoproduction

J/Psi in peripheral AuAu and UU collisions

talk by Yang

^{γ+N?} Confirmed by ALICE at higher energy

Shape of low p_T excess matches that expected from photonuclear production – can be fit with the same Starlight template as used for **UPCs**

Excess also seen in di-lepton pairs

STAR: ee in peripheral AuAu and UU collisions

Excess above the hadronic cocktail at very low p_T

See talk by Yang

ATLAS: μμ in peripheral PbPB collisions

80% centrality matches UPC

See talk by Steinberg

Models used to describe UPC data and modified to account for nuclear overlap region qualitatively reproduce the J/ ψ data

BUT there's more...

ATLAS-HION-2018-11

- Excess at low acoplanarity for all centralities
- Peak broadens for more central collisions
- Additional $\mu^+\mu^ k_T$ over in UPCs is extracted from broadening of acoplanarity peak
- Modifications qualitatively consistent with rescattering of the muons passing through hot matter produced in the collision

See talk by Steinberg

And there's more...

STAR:

- e⁺e⁻ p_T² not well matched by Starlight
- Calculation by Zha, et al., does somewhat better but both underpredict <p_T²>

And there's more...

STAR:

- e⁺e⁻ p_T² not well matched by Starlight
- Calculation by Zha, et al., does somewhat better but both underpredict <p_T²>
- Add a kick due to pair interacting with residual magnetic field

And there's more...

STAR:

- e⁺e⁻ p_T² not well matched by Starlight
- Calculation by Zha, et al., does somewhat better but both underpredict <p_T²>
- Add a kick due to pair interacting with residual magnetic field

- How can there be coherent emission in a hadronic collision?
- Is the photon source smaller than the entire nucleus (hot spots, spectators)?
- Do the leptons traverse the nuclear medium?
- Can they be a novel probe of the QGP?

See talk by Steinberg

- Is the photon source smaller than the entire nucleus (hot spots, spectators)?
- Do the leptons traverse the nuclear medium?
- Can they be a novel probe of the QGP?

Won't it be interesting to find out?!

See talk by Steinberg

What is coming up?

- 10x more data from 2018 heavy ion run at LHC
 - Many of these statistics-limited analyses will be much improved
- dAu and Rb/ZR isotope data at RHIC
- Hopefully more theoretical guidance particularly regarding coherent interactions in peripheral collisions
- People are already thinking about observing UPCs at FCC, AFTER...

Thank you for your attention

