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How EW probes are made  
(and what they tell us)

• The hard partonic processes in the heavy ion collision produce quarks, gluons and 
prompt photons and dileptons, W and Z bosons. They can tell us about nPDFs

• At a later stage, quarks and gluons form a plasma.

• Scatterings of thermal partons produce QGP photons and dileptons. T, hydro

• A jet traveling can radiate jet-thermal photons. Jet quenching

• Later on, hadronization. hadron gas photons and dileptons. T, Tc, hydro

• (Some) hadrons decay into decay photons and dileptons



• Theoretical description: convolution of microscopic rates over the macroscopic 
(hydro) evolution of the medium

• In this talk

• overview and recent results on the microscopic rates, mostly for the thermal phase

• Photons and dileptons in equilibrium from pQCD and the lattice

• Beyond equilibrium: viscous corrections and polarization

In this talk



How to compute rates
• α≪1 implies that photon production is a rare event and that rescatterings 

and back-reactions are negligible: medium is transparent to/not cooled by 
photons

• At leading order in QED and to all orders in QCD the photon and dilepton 
rates are given by

d�l+l�(k)

dk0d3k
= � ↵2

6⇡3K2

Z
d4XeiK·XTr⇢Jµ(0) J⌫(X)

d��(k)

d3k
= � ↵

4⇡2k

Z
d4XeiK·XTr⇢Jµ(0) J⌫(X)



The ingredients

• electromagnetic current J: how the d.o.f.s couple to photons

• density operator ρ. In the equilibrium (possibly just local) 
approximation it becomes the thermal density                 and the whole 
thing a thermal average

• The action S: how the d.o.f.s propagate and interact
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• pQCD: QCD action (and EFTs thereof), thermal average can be 
generalized to non-equilibrium. Real world: extrapolate from g≪1 
to  αs~0.3 
 
lattice QCD: Euclidean QCD action, pure thermal average. Real 
world: analytically continue to Minkowskian domain  

• AdS/CFT:            action, in and out of equilibrium, weak and 
strong coupling. Real world: extrapolate to QCD 

N=4

Theory approaches

=)

2

+ Crossings

Figure 4. Cut of a two loop diagram (left) corresponds to a 2 $ 2 scattering process (right).
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Figure 5. Two-loop diagram cut through a self-energy correction on the gluon, which corresponds
to scattering-induced photon radiation (crossings not shown)

significant spectral weight in this region. This leads to a distinct contributing kinematical

region which corresponds to scattering-induced emission, as shown in Fig. 5. We will call

these collinear processes or collinear splitting processes. Aurenche et al [20] first showed

that these processes are also leading order and can even be numerically dominant. The

reason is that the process includes a kinematical region in which the intermediate quark

line in Fig. 5 is nearly on the mass shell. But this near-singularity requires the inclusion

of self-energy corrections, which bring in additional diagrams by gauge invariance and the

necessity to correctly represent charge conservation. Therefore, in the kinematic region

where gluons are soft and spacelike (representing scattering processes), one must sum

over multiple gluon exchanges, such as the diagram of Fig. 6. The interference e↵ect this

generates and the associated suppression are called Landau-Pomeranchuk-Migdal (LPM)

e↵ect.

In [13], AMY showed that these two kinds of processes (elastic scattering when one

gluon is on-shell, scattering induced emission with any number of soft spacelike gluons) are

both needed in the calculation, but arise from kinematically distinct momentum regions.

Therefore the computation can be separated into a contribution from each process. The

easiest way to see that this is true is to consider the components of the o↵-shell fermion’s

momentum P , particularly the transverse component p? and the longitudinal component

p+. As illustrated in Fig. 7, the relevant momentum regions are quite distinct when viewed
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• Real, hard photon: k0=k≳T

• At one loop (αEM g0):  
 
Kinematically forbidden. Need to kick one of the quarks  off-shell. Works for 
dileptons 

• Leading order photon is αEM g2

• Strength of the kick (virtuality) naturally  
 divides the calculation in the distinct  
 2↔2 processes and collinear processes

The basics of pQCD photons
Perturbative Analysis

Jµ =
∑

q=uds

eqq̄γ
µq : ✄"✂✁%!

❅

Leading diagram:⟨JJ⟩ = ✄"✂✁%
✬
✫

✩
✪
%✂✁✄"

Timelike K: pair production ✄"✂✁%✟✟
❍❍

kinematically fine

Spacelike K: DIS
✄✂"✁%

✟✟❍❍
also kinematically OK

Lightlike K: on-shell quarks kinematically disallowed!

BNL Photons: 5 December 2011: page 6 of 27
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• Cut two-loop diagrams (αEM g2)  
 
 
 2↔2 processes (with crossings and interferences):  
 
 

• Equivalence with kinetic theory: distributions x matrix elements

• IR divergence (Compton) when t goes to zero

2↔2 processes
LO diagrams:

1 loop O(αEM):

K

Kinematically disallowed for light-like K
(both quarks can’t be on-shell simultaneously)

2 loops O(αEMαs):

K K

LO diagrams
Cut diagrams correspond to:

Compton scattering:
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• The IR divergence disappears when Hard Thermal Loop resummation is 
performed Braaten Pisarski NPB337 (1990)  
 
 
 
 

HTL

K

2↔2 processes



• The IR divergence disappears when Hard Thermal Loop resummation is 
performed Braaten Pisarski NPB337 (1990)  
 
 
 
 

• In the end one obtains the result  
 
 
Kapusta Lichard Siebert PRD44 (1991) Baier Nakkagawa Niegawa Redlich ZPC53 (1992)
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Collinear processes

• These diagrams contribute to LO if small (g) angle radiation/annihilation Aurenche Gelis 
Kobes Petitgirard Zaraket 1998-2000

• Photon formation times is then of the same order of the soft scattering rate ⇒ 
interference: LPM effect

• Requires resummation of infinite number of ladder diagrams  
 
 
 
AMY (Arnold Moore Yaffe) JHEP 0111, 0112, 0226 (2001-02)  

g g

Figure 5. Collinear diagrams. In the first case, called the bremsstrahlung diagram, the angle
between the emitted photon and the outgoing emitting fermion is of order g. In the second case,
called the pair annihilation diagram, it is the angle between the annihilating quark and antiquark
that is of order g. The diagrams where the gluon is attached to the other fermionic line are not
show. In both cases the gluon is soft and is scattering on the hard constituents of the plasma, i.e.,
it is an HTL gluon in the Landau cut. In these diagrams the gluon is scattering o↵ light quarks
(the hard lines at the bottom). The corresponding case with gluons is not shown. {fig_collinear}

In terms of the two-point function these processes correspond to diagrams with the

two nearly collinear fermion lines connected with arbitrary number of soft spacelike gluons

with same kinematics as Q. In [14, 15] Arnold, Moore and Ya↵e (AMY) showed that it is

only the ladder-type diagrams shown in Fig. 6 that contribute to leading order calculation;

the factors of g arising from additional vertices are canceled by near on-shell propagators

and large statistical factors arising from the gluonic propagators. The near on-shellness of

the quark lines makes the diagrams sensitive to thermal mass m2
1 ⇠ g2T 2 and the thermal

width � ⇠ g2T of the quark lines, which need to be consistently resummed. Furthermore

AMY showed how these diagrams can be resummed in terms of a Schrödinger equation

type di↵erential equation, and they obtained the complete leading-order results in [15]. In

Sec. 3 we will discuss in detail this equation in the context of the treatment of its NLO

corrections.
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Figure 6. The uncrossed ladder diagrams that need to be resummed to account for the LPM e↵ect
in the collinear region. The cut shown here corresponds to the interference term on the right-hand
side. The rungs on the l.h.s. are HTL gluons in the Landau cut. On the r.h.s., the crosses at the
lower hand of the gluons represent the hard scattering centers, either gluons or fermions. {fig_lpm}
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• The soft scale gT introduces O(g) corrections

• In the  collinear sector: 1-loop rungs (related to NLO qhat).  
Euclidean (EQCD) evaluation Caron-Huot PRD79

• New semi-collinear processes: larger angle  
radiation, NLO in collinear radiation approx.  
Requires a “modified qhat”, relevance for jets 

• Add soft gluons to soft quarks: nasty all-HTL region  
 
 
 
Analyticity allows us to take a detour in the complex plane away from the nasty 
region  ⇒ compact expression

Beyond leading order

g g

nB(p) ∼ T/p ∼ 1/g



• The soft scale gT introduces O(g) corrections

• In the  collinear sector: 1-loop rungs (related to NLO qhat).  
Euclidean (EQCD) evaluation Caron-Huot PRD79

• New semi-collinear processes: larger angle  
radiation, NLO in collinear radiation approx.  
Requires a “modified qhat”, relevance for jets 

• Add soft gluons to soft quarks: nasty all-HTL region  
 
 
 
Analyticity allows us to take a detour in the complex plane away from the nasty 
region  ⇒ compact expression

√

g
√

g

 soft Coulomb, spacelikesoft plasmon, 
timelike

Beyond leading order

P

p+

Analytic



• The soft scale gT introduces O(g) corrections

• In the  collinear sector: 1-loop rungs (related to NLO qhat).  
Euclidean (EQCD) evaluation Caron-Huot PRD79

• New semi-collinear processes: larger angle  
radiation, NLO in collinear radiation approx.  
Requires a “modified qhat”, relevance for jets 

• Add soft gluons to soft quarks: nasty all-HTL region  
 
 
 
Analyticity allows us to take a detour in the complex plane away from the nasty 
region  ⇒ compact expression

√

g
√

g

 soft Coulomb, spacelikesoft plasmon, 
timelike

Beyond leading order

P

p+

Analytic



• The soft scale gT introduces O(g) corrections

• In the  collinear sector: 1-loop rungs (related to NLO qhat).  
Euclidean (EQCD) evaluation Caron-Huot PRD79

• New semi-collinear processes: larger angle  
radiation, NLO in collinear radiation approx.  
Requires a “modified qhat”, relevance for jets 

• Add soft gluons to soft quarks: nasty all-HTL region  
 
 
 
Analyticity allows us to take a detour in the complex plane away from the nasty 
region  ⇒ compact expression

√

g
√

g

 soft Coulomb, spacelikesoft plasmon, 
timelike

Beyond leading order

P

p+

Analytic



pQCD photons

LO: AMY (2001-02) NLO: JG Hong Kurkela Lu Moore Teaney JHEP0503 (2013) 
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Figure 19. The functions C(k/T ) for Nc = 3, Nf = 3 as in Fig. 18, but for ↵s = 0.05. {plot_c_5_1}
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Figure 20. (a) The di↵erential rate d��/dk relative to the leading order rate as a function of k/T
(or equivalently CLO+NLO/CLO). The full next to leading order rate (LO+NLO) is a sum of the
leading order rate (LO), a collinear correction (coll), and a soft+semi-collinear correction (soft+sc).
The dashed curve labeled LO+coll shows the ratio of rates when only the collinear correction is
included, with the analogous notation for the LO+ soft+sc curve. The di↵erence between the
dashed curves provides a uncertainty estimate for the NLO calculation. (b) The same as (a) but
for larger k/T . {plot_ratio}

large cancellations we observe are rather accidental, and one should thus consider the

curves CLO(k/T ) + �Ccoll(k/T ) and CLO(k/T ) + �Csoft+sc(k/T ) as upper and lower limits

respectively of an “uncertainty estimate” of the NLO calculation.

In Fig. 19 we plot CLO+NLO(k/T ) and CLO(k/T ) for ↵s = 0.05, and Nc = 3, Nf = 3.

For the smaller coupling constant the NLO correction is always negative and rather flat,

and the magnitude of the two largely canceling contributions is also significantly smaller

than in the previous case.
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LO
NLO

Small-angle radiation

Wider-angle radiation
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• Consider non-zero virtuality k0>k≥0.

• Born contribution present, gets larger as M2=K2 grows

• If K2~T2 loop corrections: real and virtual (with IR cancellations)  
 
 
NLO results Laine JHEP1311 (2013)

• If K2≪T2 LPM and/or HTL resummations are again necessary, similar to K2=0 
Braaten Pisarski Yuan PRL64 (1990), Aurenche Gelis Moore Zaraket JHEP0212 (2002)  
NLO results JG Moore JHEP1412 (2014)

• Finite-k rate available at NLO for all K2≥0 Ghisoiu Laine JHEP1014 (2014) JG Moore (2014)

pQCD dileptons
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And the lattice?



• What is measured directly is the Euclidean correlator  
 

GE(⌧ , k) =

Z
d3xJµ(⌧ ,x)Jµ(0, 0)e

ik·x

And the lattice?



• What is measured directly is the Euclidean correlator  
 

• Analytical continuation  
 
 

GE(⌧, k) = G<(i⌧, k)

GE(⌧, k) =

Z 1

0

dk0

2⇡
⇢V (k

0, k)
cosh

�
k0(⌧ � 1/2T )

�

sinh
�
k0

2T

�

GE(⌧ , k) =

Z
d3xJµ(⌧ ,x)Jµ(0, 0)e

ik·x
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• What is measured directly is the Euclidean correlator  
 

• Analytical continuation  
 
 

• It contains much more info (full spectral function), but hidden in the 
convolution. Inversion tricky, discrete dataset with errors

GE(⌧, k) = G<(i⌧, k)

GE(⌧, k) =

Z 1

0

dk0

2⇡
⇢V (k

0, k)
cosh

�
k0(⌧ � 1/2T )

�

sinh
�
k0

2T

�

GE(⌧ , k) =

Z
d3xJµ(⌧ ,x)Jµ(0, 0)e

ik·x

And the lattice?

W<(K) = nB(k
0) ⇢V (k

0, k)
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Fitting to the lattice
• Main idea: assume spf is pQCD above some 

timelike frequency, polynomial below

• Get the Euclidean correlator from this ansatz spf 
and fit the polynomial coeffs to the lattice data

• Two approaches so far

• Quenched, continuum extrapolated lattice data, 
standard vector spf ρV=2ρT+ρL  
JG Kaczmarek Laine F.Meyer PRD94 (2016)

• Nf=2 continuum extrapolated, modified spf 
ρMainz=2ρT-2ρL  
Brandt Francis Harris H.Meyer Steinberg 
1710.07050 
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Figure 3: The spectral functions corresponding to fig. 1 (nmax = 0). The vertical bars locate the

light cone. The “best estimate from pQCD” is based on refs. [17, 18, 20], and has been constructed

as explained in footnote 3. The AdS/CFT result comes from ref. [28], and has been rescaled to agree

with the non-interacting QCD result at large ω/T . (This rescaling choice is rather arbitrary.)

the perturbative ones. The goal now is to test whether the discrepancy could be explained

by modifications of ρV in the domain of small frequencies, as explained in sec. 3.

With the ansatz of eq. (3.2), a good representation of the data can indeed be obtained.

This is illustrated in fig. 1 and more quantitatively in fig. 2, which shows the dependence of

χ2 on the matching point ω0. In the following, we fix ω0 =
√

k2 + (πT )2, which is close to

the local minimum of χ2. Similarly small χ2 could be obtained with ω0 = k, where the curves

start, but we prefer to use the minimum that is deeper in the perturbative domain, because

then we have more reasons to trust the perturbative prediction.

The corresponding results for the spectral function are illustrated in fig. 3. Barring the

possibility of large non-perturbative effects at M >∼πT , it appears plausible from fig. 3 that

the pQCD spectral functions have too much weight in the spacelike domain. This is in

qualitative agreement with the discussion in secs. 2.3 and 2.4, and suggests the gradual onset

of hydrodynamics-like behaviour. That the fit lies below the perturbative curves at k <∼ 3T

is also consistent with the expectation that the diffusion coefficient D of a strongly coupled

system should be smaller than the result of a leading-order weak-coupling analysis [39].

The value of the spectral function at the photon point, normalized as ρV(k,k)T/(2χqk), is

shown in fig. 2 (lower panels) and in fig. 4. More precisely, in order to accommodate data
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Fitting to the lattice
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Figure 4: Lattice results for Deff defined in eq. (5.2) (data points), compared with the NLO pertur-

bative prediction from ref. [17] (continuous curves). The lattice errors have been obtained by carrying

out fits with nmax = 1 to the bootstrap ensemble. The data points at k = 0 (cf. appendix A) have been

slightly displaced for better visibility. For comparison note that the heavy-quark diffusion coefficient,

determined with different methods, has been estimated as DT ∼ 0.6...1.1 at T ∼ 1.5Tc [40], and the

light-quark value as DT ∼ 0.2...0.8 at T = 1.1Tc and DT ∼ 0.2...0.5 at T = 1.3Tc [37]. The predic-

tions of ref. [17] are only reliable for k ≫ gT , but LO perturbative values at k = 0 can be obtained

by dividing the results of ref. [39] through the lattice susceptibility according to eq. (2.9), yielding

DT ≈ 2.9 at T = 1.1Tc and DT ≈ 3.1 at T = 1.3Tc. The AdS/CFT value is DT = 1/(2π) [27].

both at k = 0 and at k > 0, we define

Deff(k) ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ρV(k,k)

2χqk
, k > 0

lim
ω→0+

ρii(ω,0)

3χqω
, k = 0

. (5.2)

According to eqs. (2.9) and (2.11), limk→0Deff(k) = D. Even though the evidence for a

continuous behaviour is not overwhelming in fig. 4 due to the large systematic uncertainties

at small k <∼ 3T , it is not excluded either. We recall that according to the discussion in

sec. 2.4, hydrodynamic behaviour is expected to set in for k <∼ 1/D, which according to the

k = 0 results in fig. 4 roughly speaking corresponds to k <∼ 2T .

As already alluded to, our analysis contains systematic as well as statistical uncertainties.

In order get an impression about their magnitudes, the following tests have been carried out:

• We have tested the dependence of the results on the order of the fitted polynomial,

parametrized by nmax in eq. (3.2). Obviously, given the ill-posed nature of the inversion
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Figure 11. Estimate of the e↵ective di↵usion constant at T ⇡ 500 MeV for a single lattice spacing. The results
from the BG method are plotted as purple and green dots. Additionally, the strong-coupling result from N = 4
SYM and a weak-coupling result from leading-order (LO) perturbative QCD with ↵s = 0.25 are shown. The
model has not been fitted to the data at this temperature.

the constraint. For the whole momentum range, the bounds of the e↵ective di↵usion constant from
examining the minimum and maximum values of the maximum likelihood estimator consistent with
the data, cover a big interval and it is not possible to discriminate between the weak-coupling and
the strong-coupling scenarios. At lower momenta the spread from the model is compatible with the
separation of the two BG estimators.

Figure 11 shows the estimate of the e↵ective di↵usion constant deep in the deconfined phase at
T ⇡ 500 MeV. For this temperature, we only have one ensemble at a single lattice spacing so there
is no continuum extrapolation available, and the Padé ansatz has not yet been analyzed for this data.
By comparison with figure 10, however, we do not observe any strong temperature dependence of this
observable.

5 Summary and Outlook

We presented an estimate of the photon rate from dynamical QCD based on continuum-extrapolated
correlators. In order to be more sensitive to the physics on the light cone, we propose an alternative
linear combination of the vector-vector correlator that eliminates the UV contamination.

We avail of two qualitatively di↵erent approaches to estimate the photon rate: the Backus-Gilbert
method is a linear mapping that reconstructs a smeared estimator of the true spectral function; and a
Padé fit ansatz serves as a model inspired by relativistic hydrodynamics, AdS/CFT and plausibility
constraints. We can exploit the UV behaviour of the spectral function expected from an OPE and
derive a superconvergent sum rule that is implemented into the model.

As the uncorrelated �2-landscape is rather degenerate, we quote the median of the distribution
of acceptable solutions with �2 < 1 and the min and max values of this distribution. The median
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tions of ref. [17] are only reliable for k ≫ gT , but LO perturbative values at k = 0 can be obtained

by dividing the results of ref. [39] through the lattice susceptibility according to eq. (2.9), yielding
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continuous behaviour is not overwhelming in fig. 4 due to the large systematic uncertainties

at small k <∼ 3T , it is not excluded either. We recall that according to the discussion in

sec. 2.4, hydrodynamic behaviour is expected to set in for k <∼ 1/D, which according to the

k = 0 results in fig. 4 roughly speaking corresponds to k <∼ 2T .

As already alluded to, our analysis contains systematic as well as statistical uncertainties.

In order get an impression about their magnitudes, the following tests have been carried out:

• We have tested the dependence of the results on the order of the fitted polynomial,

parametrized by nmax in eq. (3.2). Obviously, given the ill-posed nature of the inversion
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• Define • In the hydro limit k≪T Deff→D

in the non-interacting limit [16],

ρV(ω,k) =
NcTM2

2πk

{

ln

[

cosh(ω+k
4T )

cosh(ω−k
4T )

]

−
ω θ(k − ω)

2T

}

, (2.7)

where Nc = 3. This “Born” or “thermal Drell-Yan” rate provides for a reasonable approxi-

mation at large invariant masses, M ≫ πT . However for zero invariant mass the Born rate

vanishes, and the leading-order (LO) result is proportional to αsT 2.

The determination of the correct LO result poses a formidable challenge [10]. However

there is a logarithmically enhanced term that can be worked out analytically [7, 8],

ρV(k,k) =
αsNcCFT 2

4
ln

(

1

αs

)

[

1− 2nF(k)
]

+O(αsT
2) , (2.8)

where nF is a Fermi distribution and CF ≡ (N2
c − 1)/(2Nc). The non-logarithmic terms are

only known in numerical form [9,10]. Recently, these results have been extended to O(α3/2
s T 2)

both at vanishing [11] and non-vanishing photon masses (|M |<∼ gT , where g ≡
√
4παs) [17].

In the following we make use of the results of ref. [17].

If the photon mass is large, M ≫ g1/2T , then there is a “crossover” to a different type of

behaviour [17, 18]. For M ∼ πT the NLO corrections are suppressed by αs and numerically

small [19, 20]. For M ≫ πT , the spectral function goes over into a vacuum result [21] which

is known to relative accuracy O(α4
s ) [22, 23] and can directly be taken over for a thermal

analysis [20,24]. Such precisely determined results play an essential role in our investigation.

2.3. Hydrodynamic regime

A special kinematic corner in which it is possible to make statements about ρV beyond

the weak-coupling expansion is given by the so-called hydrodynamic regime, parametrically

ω, k <∼α2
sT . This is the regime in which the general theory of statistical fluctuations [25]

applies. Then the properties of ρV can be parametrized by a diffusion coefficient, denoted

by D, and by a susceptibility, denoted by χq. The susceptibility determines the value of the

conserved charge correlator at zero momentum, χq ≡
∫ β
0 dτ

∫

x
⟨V 0(τ,x)V 0(0)⟩, whereas D

can be defined through a Kubo formula as

D ≡
1

3χq
lim

ω→0+

3
∑

i=1

ρii(ω,0)

ω
. (2.9)

The electrical conductivity is a weighted sum over these quantities,

σ = e2
Nf
∑

f=1

Q2
f χqD , (2.10)

where the disconnected contribution has been omitted thanks to
∑

f
Q

f
= 0.

3

JG Kaczmarek  
Laine F.Meyer

Brandt Francis  
Harris H.Meyer  
Steinberg



Beyond thermal equilibrium
• Everything so far has been in thermal 

equilibrium

• But the medium in heavy ion 
collisions is not

• How are the rates affected by viscous 
corrections?  
 

• Talk by J.-F. Paquet, Wed 9:00 
Paquet et al PRC93 (2016)
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FIG. 9. E↵ect of bulk viscosity on the direct photon spec-
trum (top panel) and v2 (bottom panel) in Pb-Pb collisions
at

p
sNN = 2760 GeV. ALICE measurements [13, 14, 64] are

shown for reference.

spacetime evolution of the medium. The e↵ect of bulk
viscosity on the emission rates is illustrated in Fig. 10
by showing the photon spectrum and v2 with and with-
out corrections to the rates due to bulk viscosity. The
e↵ect of the shear viscous correction to the photon rates
is shown as well, for reference.

Viscous corrections to the rates have a small e↵ect on
the direct photon spectrum. This can be understood
from the fact that viscous corrections are larger at higher
pT , where prompt photons dominate over thermal ones.

The direct photon v2, on the other hand, is suppressed
at higher pT by both shear and bulk viscosity corrections
to the photon rates. The suppression is of the order of
20 � 30%. Recall however that not all photon emission
rates are corrected for the e↵ect of shear and bulk vis-
cosities, as listed in Table II. In consequence, the results
shown in Fig. 10 most likely underestimate the e↵ect of
viscosity on the photon rates.

The e↵ect of bulk viscosity on the spacetime descrip-
tion of the medium is illustrated in Fig. 11. The change

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2  2.5  3

v 2
γ {

S
P

}

pT (GeV)

Pb-Pb 0-40%
√s=2.76 TeV

ALICE (prelim)
Rates w/ shear and bulk viscous corr.
Rates w/ shear viscous corr.
Rates w/o viscous corr.

FIG. 10. E↵ect of viscosity corrections to the photon emis-
sion rates for the direct photon spectrum (top panel) and v2
(bottom panel) in Pb-Pb collisions at

p
sNN = 2760 GeV.

in spacetime volume induced by the inclusion of bulk vis-
cosity is shown for di↵erent ranges of temperature on the
left, while the e↵ect of bulk viscosity on the flow velocity
distribution, as quantified by u⌧ =

p
1 + (ux)2 + (uy)2,

is shown on the right. The e↵ect of bulk viscosity is
clear: it reduces the transverse expansion of the medium
at low temperature, but considerably increases its space-
time volume. Since thermal photon emission is propor-
tional to the spacetime volume, the increase in volume
translates into a larger number of emitted photons. On
the other hand the slower transverse expansion implies a
softer photon spectrum, with more soft photons emitted
but less hard ones. It is the combination of these two
e↵ects that produce an overall softening of the photon
spectrum in the presence of bulk viscosity.

D. E↵ect of photon emission rates

Calculations of direct photons in heavy ion collisions
do not always use the same photon emission rates in the

Thermal photon emission rates can be calculated by 

Viscous Photon Emission Rates: General Formalism

Eq
dR

d3q
=

Z
d3p1

2E1(2⇡)3
d3p2

2E2(2⇡)3
d3p3

2E3(2⇡)3
1

2(2⇡)3
|M|2

⇥f1(p
µ
1 )f2(p

µ
2 )(1± f3(p

µ
3 ))(2⇡)

4�(4)(p1 + p2 � p3 � q)

With

We can expand photon emission rates around the 
thermal equilibrium:

f(pµ) = f0(E) + f0(E)(1± f0(E))
⇡µ⌫ p̂µp̂⌫
2(e+ p)

�
⇣ p

T

⌘

5(15)

Some



Beyond thermal equilibrium

• 2↔2 processes (partonic and hadronic) are easily generalized by 
introducing viscous distributions

LO diagrams
Cut diagrams correspond to:

Compton scattering:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Pair annihilation:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Every time a scattering takes place, a quark can convert to a photon
⇒ For (K 2 = 0) t −→ 0, IR divergence:

D> ∝

∫

Λ2
IR

dq2
⊥

dσ

dq2
⊥

∝ ln

(
k0T

Λ2
IR

)

P

P 0

K

K 0 Z

ph. space
f(p)f(p0)(1± f(k0))|M|2�4(P + P 0 �K �K 0)

Thermal photon emission rates can be calculated by 

Viscous Photon Emission Rates: General Formalism

Eq
dR

d3q
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Z
d3p1

2E1(2⇡)3
d3p2

2E2(2⇡)3
d3p3
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1

2(2⇡)3
|M|2
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µ
1 )f2(p

µ
2 )(1± f3(p

µ
3 ))(2⇡)

4�(4)(p1 + p2 � p3 � q)
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We can expand photon emission rates around the 
thermal equilibrium:

f(pµ) = f0(E) + f0(E)(1± f0(E))
⇡µ⌫ p̂µp̂⌫
2(e+ p)

�
⇣ p

T

⌘

5(15)

Equilibrium rates

Hadron GasQGP

off-equilibrium    corrections�f

q
dR

d3q
= �0 +

⇡µ⌫ q̂µq̂⌫
2(e+ p)

a↵��
↵�

Self-energy
⌃ = ⌃0 + ⇡µ⌫⌃1µ⌫

Viscous Photon Emission Rates: General Formalism

6(15)Shen, Paquet et al. (2014)

• Small t region: Hard Loop 
resummation

Schenke Strickland (2007)
Shen Heinz Paquet Kozlov Gale (2013)

C. Shen



Beyond thermal equilibrium
g g

Figure 5. Collinear diagrams. In the first case, called the bremsstrahlung diagram, the angle
between the emitted photon and the outgoing emitting fermion is of order g. In the second case,
called the pair annihilation diagram, it is the angle between the annihilating quark and antiquark
that is of order g. The diagrams where the gluon is attached to the other fermionic line are not
show. In both cases the gluon is soft and is scattering on the hard constituents of the plasma, i.e.,
it is an HTL gluon in the Landau cut. In these diagrams the gluon is scattering o↵ light quarks
(the hard lines at the bottom). The corresponding case with gluons is not shown. {fig_collinear}

In terms of the two-point function these processes correspond to diagrams with the

two nearly collinear fermion lines connected with arbitrary number of soft spacelike gluons

with same kinematics as Q. In [14, 15] Arnold, Moore and Ya↵e (AMY) showed that it is

only the ladder-type diagrams shown in Fig. 6 that contribute to leading order calculation;

the factors of g arising from additional vertices are canceled by near on-shell propagators

and large statistical factors arising from the gluonic propagators. The near on-shellness of

the quark lines makes the diagrams sensitive to thermal mass m2
1 ⇠ g2T 2 and the thermal

width � ⇠ g2T of the quark lines, which need to be consistently resummed. Furthermore

AMY showed how these diagrams can be resummed in terms of a Schrödinger equation

type di↵erential equation, and they obtained the complete leading-order results in [15]. In

Sec. 3 we will discuss in detail this equation in the context of the treatment of its NLO

corrections.
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Figure 6. The uncrossed ladder diagrams that need to be resummed to account for the LPM e↵ect
in the collinear region. The cut shown here corresponds to the interference term on the right-hand
side. The rungs on the l.h.s. are HTL gluons in the Landau cut. On the r.h.s., the crosses at the
lower hand of the gluons represent the hard scattering centers, either gluons or fermions. {fig_lpm}
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• Modification of collinear processes is a lot more complicated, because of 
anisotropic gluon Hard Loops

• Kinetic and diagrammatic evaluation of the rate equation  
AMY (2002), Jeon Gale Hauksson PRC97 (2017)

• At zero (bulk viscosity) or small anisotropies a solution is available

• At larger anisotropy the perturbative scattering rate grows exponentially 
because of plasma instabilities (Weibel)

• Very interesting open issue with ties to thermalization Kurkela Moore (2011)



Beyond thermal equilibrium
• The modification of the rates is not the only effect of non-equilibrium: anisotropies in the 

medium polarize the real or virtual photons 

• Virtual case more easily measurable

• Computations become more intricate: from ρV=2ρT+ρL to 4 spfs, attempted so far only for 
Born terms in partonic and hadronic phases Baym Hatsuda Strickland PRC95 (2017) Speranza 
Jaiswal Friman PLB782 (2018) Talk by A. Nikolskii Wed 11:25

• Born rates a  meaningful approximation for K2≳T2. At low mass processes involving 
gluons become important. Same issues as for the rates? Very interesting!
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FIG. 3. (Color online) Anisotropy coe�cients integrated over
transverse momentum in the range between 0.6 GeV and 2
GeV as functions of the invariant mass M for (a) the Drell-
Yan and (b) the pion-annihilation processes. The red dashed
lines refer to �✓ in the case of a static uniform medium, the
blue solid lines show �✓ in the helicity frame for the longitu-
dinal Bjorken expansion, and the green dot-dashed lines the
corresponding �̃.

small values of the photon transverse momentum and
vanishes at qT = 0 GeV, for both processes, as expected.

For large values of qT the anisotropy coe�cients again
approach zero, because the momentum distribution func-
tions are well approximated by the Boltzmann distribu-
tion, leading to unpolarized photons. We note that the
anisotropy coe�cients for pion annihilation tend to zero
faster than for the Drell-Yan process, owing to the non-
zero pion mass and the lower average temperature in the
hadronic phase.

In the case of the Bjorken expansion, (Fig. 2), the
anisotropy coe�cients do not vanish in the limit qT ! 0.
This is a consequence of the fact that a photon with
vanishing momentum in the c.m. frame, has a non-zero
momentum in the local fluid rest frame, if emitted from
a fluid element with flow. As in the static case, we ob-
serve that for large momenta the anisotropy coe�cients
approach zero, because the momentum distribution func-
tions approach the Boltzmann limit.

In Fig. 3 the anisotropy coe�cients, integrated over
qT between 0.6 and 2 GeV, are shown as functions of the
photon invariant mass M . Here the Boltzmann limit,
with vanishing anisotropy, is approached for large M .
Moreover, the pion-annihilation anisotropy coe�cients
vanish also in the limit M ! 2m⇡, as discussed in section
IIIA for a static medium.

Interestingly, the two processes considered yield rather

similar anisotropy patterns, although the photon polar-
izations in the corresponding elementary reactions are
distinctly di↵erent. In the Drell-Yan process, the pho-
tons are purely transverse (�✓ = 1), while in the pion-
annihilation process they are purely longitudinal (�✓ =
�1) in a frame where the z-axis is along the “beam” axis,
defined by the momenta of the incident particles in the
c.m. frame. Now, when the incident particles are drawn
from a Bose-Einstein distribution, momenta along the z

axis of the helicity frame are preferred, while for a Fermi-
Dirac distribution function, there is a slight preference
for momenta in the plane orthogonal to that axis. These
e↵ects conspire to yield the resulting negative values for
�✓ in the helicity frame, shown in Figs. 2 and 3.
In order to make a qualitative comparison with the

data of NA60 [9], we perform an integration over the
invariant mass, the photon transverse momentum and
the rapidity in the intervals 0.4 GeV < M < 0.9 GeV,
0.6 GeV < qT < 2 GeV and 0.3 < y < 1.3, respectively.
To be precise, the resulting �n (n = ✓,� etc.) is the ratio
of

R
N�n and

R
N , where the integral signs indicate the

integration over photon kinematics (cf. Eq. 1). In this
context, we note that the relations between anisotropy
coe�cients in di↵erent frames [16] are at best approxi-
mate for the “integrated” quantities, since the rotation
angle � (cf. Fig. 1) depends on the photon kinematics,
i.e., on the integration variables.
We use Ti = 250 and Tf = 160 MeV for the Drell-Yan

process and Ti = 160 and Tf = 120 MeV for pion anni-
hilation. In the helicity frame, we find �

HX

✓
' �0.008

and �
HX

�
' �0.009 for the Drell-Yan and �

HX

✓
' �0.014

and �
HX

�
' �0.016 for the pion-annihilation processes.

Correspondingly, in the Collins-Soper frame, the Drell-
Yan process yields �

CS

✓
' 0.002 and �

CS

�
' �0.012

and the pion annihilation process �
CS

✓
' 0.007 and

�
CS

�
' �0.023, respectively.

We have also computed �̃, which is frame invariant,
also when integrated over the photon kinematics. For
the Drell-Yan process, we find �̃ ' �0.034, while for
pion annihilation we obtain �̃ ' �0.061. We note that
the integrated �̃ in all cases di↵ers considerably from the
corresponding �✓, and that the integrated �� is similar
in magnitude or even larger than �✓. This implies that,
for Bjorken flow, the y-dependence of the anisotropy co-
e�cients is fairly strong both in the HX and CS frames
and that both �✓ and �� are important for character-
izing the polarization of virtual photons emitted from a
longitudinally expanding system.

V. SUMMARY AND OUTLOOK

In this work we studied the polarization of virtual pho-
tons in heavy-ion collisions. In particular, we presented a
general framework for studying photon polarization and
the associated angular anisotropies of dileptons produced
at high collision energies. We showed, using two ex-

Speranza Jaiswal Friman PLB782 (2018)
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a fluid element with flow. As in the static case, we ob-
serve that for large momenta the anisotropy coe�cients
approach zero, because the momentum distribution func-
tions approach the Boltzmann limit.

In Fig. 3 the anisotropy coe�cients, integrated over
qT between 0.6 and 2 GeV, are shown as functions of the
photon invariant mass M . Here the Boltzmann limit,
with vanishing anisotropy, is approached for large M .
Moreover, the pion-annihilation anisotropy coe�cients
vanish also in the limit M ! 2m⇡, as discussed in section
IIIA for a static medium.

Interestingly, the two processes considered yield rather

similar anisotropy patterns, although the photon polar-
izations in the corresponding elementary reactions are
distinctly di↵erent. In the Drell-Yan process, the pho-
tons are purely transverse (�✓ = 1), while in the pion-
annihilation process they are purely longitudinal (�✓ =
�1) in a frame where the z-axis is along the “beam” axis,
defined by the momenta of the incident particles in the
c.m. frame. Now, when the incident particles are drawn
from a Bose-Einstein distribution, momenta along the z

axis of the helicity frame are preferred, while for a Fermi-
Dirac distribution function, there is a slight preference
for momenta in the plane orthogonal to that axis. These
e↵ects conspire to yield the resulting negative values for
�✓ in the helicity frame, shown in Figs. 2 and 3.
In order to make a qualitative comparison with the

data of NA60 [9], we perform an integration over the
invariant mass, the photon transverse momentum and
the rapidity in the intervals 0.4 GeV < M < 0.9 GeV,
0.6 GeV < qT < 2 GeV and 0.3 < y < 1.3, respectively.
To be precise, the resulting �n (n = ✓,� etc.) is the ratio
of

R
N�n and

R
N , where the integral signs indicate the

integration over photon kinematics (cf. Eq. 1). In this
context, we note that the relations between anisotropy
coe�cients in di↵erent frames [16] are at best approxi-
mate for the “integrated” quantities, since the rotation
angle � (cf. Fig. 1) depends on the photon kinematics,
i.e., on the integration variables.
We use Ti = 250 and Tf = 160 MeV for the Drell-Yan

process and Ti = 160 and Tf = 120 MeV for pion anni-
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' �0.009 for the Drell-Yan and �
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and �
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Correspondingly, in the Collins-Soper frame, the Drell-
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' 0.002 and �
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and the pion annihilation process �
CS

✓
' 0.007 and
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We have also computed �̃, which is frame invariant,
also when integrated over the photon kinematics. For
the Drell-Yan process, we find �̃ ' �0.034, while for
pion annihilation we obtain �̃ ' �0.061. We note that
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izing the polarization of virtual photons emitted from a
longitudinally expanding system.
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In this work we studied the polarization of virtual pho-
tons in heavy-ion collisions. In particular, we presented a
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at high collision energies. We showed, using two ex-



Beyond thermal equilibrium
• The modification of the rates is not the only effect of non-equilibrium: anisotropies in the 

medium polarize the real or virtual photons 

• Virtual case more easily measurable

• Computations become more intricate: from ρV=2ρT+ρL to 4 spfs, attempted so far only for 
Born terms in partonic and hadronic phases Baym Hatsuda Strickland PRC95 (2017) Speranza 
Jaiswal Friman PLB782 (2018) Talk by A. Nikolskii Wed 11:25

• Born rates a  meaningful approximation for K2≳T2. At low mass processes involving 
gluons become important. Same issues as for the rates? Will the anisotropy coefficients be 
enhanced? Very interesting!



Summary
• Precise knowledge of the rates of the associated error uncertainty is very important 

for phenomenology

• In equilibrium, at k≳$T, NLO pQCD calculations, hybrid pQCD/lattice approaches 
and lattice reconstructed spf are now becoming available and can be used to 
constrain the uncertainty. Getting to few 10% in the future?

• Progress on non-equilibrium rates

• Bulk corrections added consistently to all QGP rates, shear corrections require 
more theoretical work, tie to bottom-up thermalization and plasma instabilities

• Calculations of polarization are progressing, waiting for NLO dilepton 
polarization
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Figure 1: Fitted imaginary-time correlators at non-zero momenta. The “best estimate from pQCD”

(perturbative QCD) is based on refs. [17,18,20], and has been constructed as explained in footnote 3.

“Polynomial interpolations” correspond to nmax = 0, but similarly good fits are obtained for nmax = 1.

χq is the quark number susceptibility and

G
V,free(τ,0) ≡ 6T 3

[

π(1− 2τT )
1 + cos2(2πτT )

sin3(2πτT )
+

2 cos(2πτT )

sin2(2πτT )

]

. (4.3)

Normalization by χq removes the renormalization factors associated with our local discretiza-

tion of the vector current, and normalization through G
V,free hides the short-distance growth

of the imaginary-time correlator. O(a) improvement permits for a continuum extrapolation

quadratic in 1/Nτ . More details can be found in ref. [37]. With this approach a continuum

extrapolation could be carried out at τT ≥ 0.18 for T = 1.1Tc and at τT ≥ 0.22 for T = 1.3Tc.

These are the distances included in the subsequent analysis. A bootstrap sample was gen-

erated for the continuum extrapolated results, which was used for estimating the statistical

errors of our final observables. In a separate set of continuum extrapolations, the suscepti-

bilities were determined through a quadratic fit, yielding χq = 0.857(16)T 2 at T = 1.1Tc and

χq = 0.897(17)T 2 at T = 1.3Tc [37].
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Figure 2: We show χ2/d.o.f. (top) and DeffT (bottom; cf. eq. (5.2)) as a function of the matching

point ω0 for nmax = 0. In the right panel, the upper curves are for T = 1.2Tc and the lower curves

for T = 1.3Tc on the perturbative side (the lattice data is fixed but it is not known precisely to which

temperature it corresponds, cf. table 1). A local minimum of χ2/d.o.f. is generally found close to the

point where ω0 =
√

k2 + (πT )2; it is very shallow for the smallest k.

5. Fit results

Having discussed the spectral function on one side (sec. 3) and the imaginary-time correlator

on the other (sec. 4), the remaining task is to compare the two. The relation is given by

GV(τ,k) =

∫ ∞

0

dω

π
ρV(ω,k)

cosh[ω(β2 − τ)]

sinh[ωβ2 ]
, β ≡

1

T
. (5.1)

Inserting into eq. (5.1) the best available perturbative estimate for ρV, based on an interpo-

lation between the results of refs. [17, 18, 20],3 a visible discrepancy is observed between the

perturbative and lattice results at τT >∼ 0.3 (cf. fig. 1). In general the lattice results are below

3The data is available through ref. [38]. More precisely, for very large time-like frequencies it is given by

the large-M results of ref. [20] which go over into the N4LO vacuum result for ω ≫ πT [21–23]. For ω<
∼ 10T it

is given by the interpolation of the large-M result and the LO LPM-resummed small-M result, as presented in

ref. [18], summed together with the NLO small-M result of ref. [17] (switched off exponentially with growing

M to avoid OPE-violating contributions [21] proportional to T
2). In this way, the value at the real photon

point ω = k agrees with the NLO photon calculation [11]. In the space-like region the spectral function is the

largest between the Born one with vacuum corrections [20] and the NLO small-M result [17]. In practice, this

implies that at the smallest ω we have the Born-like spectral function, whereas close to the light-cone we have

the small-M one, ensuring continuity across the light-cone.
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T/Tc k/T α/T β/T 2 γ/T TDeff|nmax = 0 TDeff|nmax = 1

1.1 2.094 0.028(15) 2.072 1.611 0.108(4) 0.019(153)

4.189 0.091(8) 2.325 1.963 0.130(1) 0.066(45)

6.283 0.105(4) 2.498 2.331 0.109(1) 0.102(8)

1.3 1.833 0.024(17) 2.038 1.558 0.093(5) 0.153(119)

3.665 0.112(10) 2.229 1.984 0.119(1) 0.111(59)

5.498 0.141(6) 2.367 2.438 0.094(1) 0.097(13)

Table 2: Fit results for the coefficients in eq. (3.2), with α = δ0/ω0, and for the effective diffusion

coefficient Deff of eq. (5.2), from fits with nmax = 0. For Deff the results from the bootstrap analysis

with nmax = 1 are also shown; the latter constitute our final results and are illustrated in fig. 4.

problem, the results are quite sensitive to nmax. The difference of the results obtained

with nmax = 0 and nmax = 1 can be employed as one indication of systematic errors, cf.

table 2. The resulting errors are of the same order of magnitude but somewhat smaller

than those obtained from the bootstrap sample with nmax = 1, cf. table 2 and the

discussion below. Therefore we display the latter as our uncertainties in fig. 4. Stable

results (i.e. results with errors below 100%) could only be obtained for k >∼ 3T .

• On the lattice side, uncertainties related to scale fixing imply a certain uncertainty of the

value of T/Tc simulated, cf. table 1. On the perturbative side, there is an uncertainty

from higher orders in the perturbative expansion, which can partly be estimated through

the dependence of the results on the renormalization scale. Our experience suggests

that the latter scale uncertainty (which is a higher-order effect) is of a similar magnitude

as the former (which is a leading-order effect but with a smaller variation). We show

results from a variation of the former type in the right panel of fig. 2, concluding that

this uncertainty is negligible compared with the dependence on nmax.

• As mentioned above, our continuum extrapolations were carried out for the ratios

T 2GV/[χqGV,free], and the continuum value of χq/T
2 was determined through a sep-

arate extrapolation. For a matching to perturbative results in the ultraviolet regime,

we need the value of GV/T
3. In other words, the errors related to the two separate

continuum extrapolations need to be combined. We have done this by fixing χq/T
2 to

its central, minimal, and maximal value within the error band, and repeating the boot-

strap analysis in each case. The resulting variations of DeffT are subleading compared

with systematic uncertainties, and can be omitted in practice.

• In figs. 1 and 5, the errors shown for the lattice data correspond to diagonal entries of

the covariance matrix. However, we have carried out a full-fledged bootstrap analysis.
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• Backus-Gilbert method: linear map 
from the space of functions in the 
time domain, G, to the space of 
functions on the frequency domain, 
ρBG 

• It is exact for constant spfs and 
advantageous for a slowly varying 
spf

• The Mainz spf might indeed be 
slowly varying, or at least much 
slower than the vector one

The latter linear combination vanishes identically in the vacuum and is highly suppressed in the ul-
traviolet. Here we concentrate on the case � = �2; in the future, we plan to also analyze the case
� = 0, which should yield consistent photon rates, thus providing a powerful cross-check. At the end,
the spectral functions with � = 0 and � = �2 can be recombined in order to predict the dilepton rate.
The importance of removing UV divergences from Euclidean correlators to estimate thermal real-time
observables has also been discussed in ref. [12].
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Figure 1. The spectral function ⇢�(!, k) computed in tree-level continuum perturbation theory, illustrating the
improved UV behaviour of the � = �2 spectral function (solid lines) versus the standard divergent choice � = 1
(dashed line).

Figure 1 illustrates the e↵ect of the cancellation on the tree-level spectral function in the solid
lines. The standard correlation function (� = 1) is shown for the lowest momenta in the dashed line,
which diverges as !2 at large frequencies. The spectral function with � = �2 on the other hand is
very suppressed for ! > k, thus making this channel very sensitive to the infrared physics of interest.
Note that the spectral function evaluated on the photon mass-shell (at the kink), and thus the photon
rate, vanishes at this order in perturbation theory. If one thinks of the inverse problem as resulting in a
‘smearing’ of the actual spectral function, as is explicitly the case in the Backus-Gilbert method, then
this represents a di�culty, since the spectral weight is of order unity for ! . k.

2 Continuum limit

We have generated a series of ensembles to take the continuum limit at a single temperature, ap-
proximately T = 250 MeV, above the crossover to the chirally symmetric phase, and an additional
ensemble at a single lattice spacing deep in the deconfined phase, approximately T = 500 MeV;
see table 1. We use the non-perturbatively O(a)-improved Wilson action [13] with Nf = 2 Wilson
fermions and the Wilson gauge action. The parameters were chosen using the running of the coupling
and quark masses as determined by the CLS collaboration [14]. The lattice with N⌧ ⌘ �/a = 16 at
T ⇡ 250 MeV, where � = T�1 is the inverse temperature, has been used for our previous studies, see
refs. [15–17].

In order to control the continuum limit we measured the two-point correlation functions of the
vector current using both local and exactly-conserved discretizations of the current. Furthermore, in
the case of the local-conserved correlation function, there are two discretizations of the � = �2 linear
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Figure 5: Photoemission spectrum for different values of λ, as a function of the light-like momen-
tum of the emitted photon divided by the equilibrium temperature, k/T . Notice that in fact we
show the curves for dΓγ/dk divided by αem(N2 − 1)T 3. Solid, long-dashed, dashed, small-dashed,
tiny-dashed, and dotted lines correspond to decreasing values of λ = very large (in fact it is the
analytical expression from supergravity with no string theory corrections), to 200, 150, 100, 50 and
35, respectively. On the other hand, we show two additional curves corresponding to the weakly
coupled SYM obtained in [22]: a small-dashed line and a long-dashed line, which represent the
perturbative SYM plasma for λ = 0.2 and 0.5, respectively.
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Figure 4. Left: The � = 1 spectral density for photons of di↵erent virtualities in thermal
equilibrium (dotted lines) and in an o↵-equilibrium state described by the collapsing shell model
with us = 1/1.12. Right: The corresponding relative deviations from the thermal limit, R, for c = 0
(solid blue line), c = 0.8 (dotted red line) and c = 1 (dashed black line).
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Figure 5. As in fig. 4, but for � = 300 (left) and � = 100 (right).

virtual photons, i.e. dileptons at rest, are the first ones to thermalize, confirming the

observations made in somewhat di↵erent contexts in [44, 45]. Finally, we note that in all

cases studied the amplitude of the oscillations in R decreases at large !, consistent with

the known top-down nature of thermalization at infinite ’t Hooft coupling.

At finite values of �, one expects to witness a qualitative change in the behavior of the

deviation function (now R?), as reported for real photons (c = 1) in [30]. To investigate

what happens at nonzero virtuality, we determined the transverse spectral density �? and

the corresponding R? for the same values of c considered above, but setting now � = 300

and 100, cf. fig. 5. Similarly to the case of real photons, we again observe the asymptotic

behavior of the fluctuation amplitude changing from a 1/! suppression towards linear

growth as the coupling is decreased. This behavior, however, appears to depend on the

virtuality rather strongly, with the transition happening later as c is decreased; in the case

of maximal virtuality, c = 0, the amplitude of R? even appears to approach a constant at

large !. Finally, we note that the � = 1 observation of the amplitude of R? decreasing

with increasing virtuality seems to hold at all coupling strengths considered.

Just as in the case of [30], one must exercise some caution with the above results,

not least because both the quasistatic approximation and the strong coupling expansion
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