

D-meson directed flow in Pb-Pb collisions with the ALICE detector

A. Dubla on behalf of the ALICE Collaboration University of Heidelberg, Germany GSI Helmholtz Centre for Heavy Ion Research, Germany Email : <u>andrea.dubla@cern.ch</u>

Motivation

- In non-central heavy-ion collisions a strong magnetic field ($\sim 10^{18}$ G) is generated by the movement of the **proton spectators**. It quickly decreases (~1 fm/c) as the spectators fly away.
- The varying magnetic field will influence the moving charges and it results in a charge-dependent **directed flow**, asymmetric in rapidity [1]
- The charm quark is an ideal probe

ALICE detector

- - energy loss
- - Particle identification via the time

- **D-meson reconstruction via decay topologies** displaced few hundred microns from the collision point.
- **Reduction of the combinatorial** background achieved applying:
- geometrical selection of displaced decay-vertex topologies
- particle identification (PID) of decay tracks.

Results

- Hint of a reduction of the v_1^{odd} for $p_T > 6 \text{ GeV}/c$. - Data suggest larger v_1^{odd} with respect to theoretical calculations.

- Computed rapidity-odd component for D⁰ and \overline{D}^0 separately: $v_1^{\text{odd}} = \frac{1}{2}(v_1\{\Psi_A\} v_1\{\Psi_C\})$ - sensitive to the asymmetry induced by the magnetic field
- $v_1^{\text{odd}}(\mathbf{D}^0)$ extracted from a simultaneous fit to the invariant mass and to the $v_1^{\text{odd}}(M)$ distributions

Projections with the ALICE upgrade

- Factor two larger significance for the D⁰ meson with the upgrade of the ITS detector [5].
- With the upgraded ITS the **background rejection improves** by a factor of 4-5 for $p_{\rm T} > 2 \text{ GeV}/c$ and by a factor of about 10 for $p_{\rm T} < 2 \text{ GeV}/c$.

LI-PREL-307078

- Larger data samples needed to quantify it.
- $\Delta v_1^{\text{odd}} = v_1^{\text{odd}}(\mathbf{D}^0) v_1^{\text{odd}}(\mathbf{\overline{D}}^0)$ fitted with a linear function to quantify the effect.
- Indication of positive slope with a significance of 2.7 σ in 3 < $p_{\rm T}$ < 6 GeV/*c*.

14 16 ρ_τ (GeV/c) 12 16 10 ALI-PUB-85194

ALI-SIMUL-140060

- **Performed projections** for the charge-dependence directed flow of D mesons. Input of the simulation for the $v_1^{\text{odd}}(D^0)$ based on the theoretical predictions [2].
- Based on this simulation, despite the small signal expected from the theory, with the detector upgrade and the statistics that will be collected in **Run3/4**, the measurements will be done with high significance.

Conclusions

- The directed flow v_1^{odd} has been computed for D⁰ and \overline{D}^0 separately in the 10-40% centrality class.
- Indication of opposite trend of v_1^{odd} as a function of η for D⁰ and \overline{D}^0 with $3 < p_T < 6$ GeV/*c* and indication for a positive slope of Δv_1^{odd} with a 2.7 σ significance
- Data might indicate larger v_1^{odd} with respect to theoretical calculations. Larger data samples needed to give constraints to theoretical calculations.
- Projections show that with the **detector upgrade** and with the statistics that will be collected in **Run3/4**, the measurements will be done with **high significance**.

[1] Phys. Rev. C 89, 054905 (2014) [2] Phys. Lett. B 768 (2017) 260-264

[3] Phys. Rev. Lett. 120, 192301 (2018) [4] arXiv:1804.04893 [nucl-th]

[5] Phys. Rev. C 66 (Sep, 2002) 034904 [6] J. Phys. G 41 (2014) 087002