Low-mass dilepton measurements with ALICE at the LHC

Hard Probes 2018: International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

Aix-Les-Bains, Savoie, France

Alberto Calivà for the ALICE Collaboration

Outline

Introduction & physics motivation

Dimuon measurements:

- - > Improved precision of the measurement in pp collisions at $\sqrt{s} = 5.02$ TeV (preliminary)

Dielectron measurements:

- Published results in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
- Preliminary results in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
- Dielectron invariant-mass spectra & heavy-flavor cross sections in pp collisions

Introduction & physics motivation

Dileptons are produced continuously during the space-time evolution of nucleus-nucleus collisions

Negligible final state interaction:

Unperturbed signals on production process

Low-mass vector-meson production:

- Input for phenomenological models that describe particle production in a non-perturbative QCD regime
- Strangeness production via the φ meson measurement

Dilepton continuum:

- In-medium effects of low-mass vector mesons (broadening)
- Thermal radiation from virtual component of direct photons
- Measurement of charm and bottom production & modification

Measurements in pp collisions → fundamental baseline for AA collisions

The ALICE setup

ITS (Inner Tracking System)

➤ Tracking, vertexing & PID (via d*E*/d*x* in silicon layers)

TPC (Time Projection Chamber)

Tracking & PID (via dE/dx in the gas)

TOF (Time Of Flight)

PID (via TOF measurement)

V₀

Centrality estimator

Muon spectrometer

Trigger & tracking of muons

Dimuon measurements

Signal extraction of ϕ meson

Single muons are selected with -4 < $\eta_{\rm u}$ < -2.5

Minimum p_T for dimuon pairs:

- 2 GeV/c in Pb-Pb collisions
- \approx 0 GeV/c in pp collisions for most forward rapidity

Combinatorial background:

Unlike-sign invariant-mass distribution from mixed events normalized to $2R\sqrt{N_{++}\cdot N_{--}}$

$$R = N_{+-}^{\text{mixed}} / \left[2\sqrt{N_{++}^{\text{mixed}} \cdot N_{--}^{\text{mixed}}} \right]$$

correction for geometrical asymmetry of the detector

Contribution from light-meson decays estimated from a fit with mass shapes given by simulations

Continuum background from open charm and bottom "regularized" to describe the residual contribution from correlated background

φ meson in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

EPOS 3 and HIJING 2 underestimate the ϕ meson yield by a factor ~2 at low p_T dN_{ϕ}/dy per participant: increasing trend vs. $< N_{part} >$ followed by saturation > Constant ratio (~2) between production at mid-rapidity and forward

 R_{AA} at forward and mid-rapidity are consistent: similar interaction with the bulk

φ meson in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

 p_{T} spectrum described by power-law function in all centralities

Tails become harder going from central to more peripheral collisions

Consistent with previous results from ALICE and PHENIX

 p_{T} -dependent R_{AA} : stronger suppression in central collisions

Energy dependence of ϕ meson production

New measurement of the ϕ meson spectrum in pp collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

- \succ Improved statistical precision and wider p_T range
- Smaller systematic uncertainties

 p_{T} spectrum of ϕ meson becomes harder for increasing center-of-mass energy

ф meson production vs. y and energy

The full rapidity dependence of the ϕ meson p_T -integrated production cross section is not reproduced by the models

PYTHIA 8 consistent with the data only at forward rapidity

The \sqrt{s} dependence of the ϕ meson cross section, integrated over common phase space of the measurements, is described by PHOJET

Dielectron measurements

Electron identification & signal extraction

Electron candidates are selected in the pseudorapidity range $|\eta_e|$ <0.8

Particle identification based on d*E*/d*x* measured by ITS and TPC and time-of-flight measured by TOF

Combinatorial background described by like-sign invariant-mass spectrum:

$$2R\sqrt{N_{++}\cdot N_{--}}$$

correlated & uncorrelated background

Dielectrons in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

Cocktail of known hadronic sources:

- π⁰ from ALICE measurement
- η from K/π ratio in Pb-Pb and η/π ratio in pp collisions
- Other mesons from m_T scaling

Dielectrons from charm and bottom decays obtained as $< N_{coll} > \times (dN/dm_{ee})_{pp}$

From PYTHIA 6 scaled to $\sigma_{c\overline{c}}$ and $\sigma_{b\overline{b}}$ cross-sections measured in pp collisions

Data are consistent with the cocktail within the uncertainties

Data / cocktail (w/o vacuum ρ^0) in 150 < $m_{\rm ee}$ < 700 MeV/ c^2 : 1.40 ± 0.28 (stat.) ± 0.08 (syst.) ± 0.27 (cocktail)

Limited sensitivity to low-mass excess due to low statistics

Thermal dielectrons

Theoretical model calculations:

R. Rapp:

Thermal dielectrons from expanding fireball model and in-medium broadening of p⁰ from hadronic many-body theory

PHSD:

Thermal dielectrons from QGP assuming that quarks are massive off-shell quasi particles. Collision broadening of ρ^0 spectral function

The two models are consistent with the data within the uncertainties

Virtual direct photons

Contribution from virtual direct photons measured from minimized χ^2 fit of data in the mass range $100 < m_{ee} < 300 \text{ MeV}/c^2$:

cocktail

$$f(m_{\rm ee}) = r \cdot f_{dir}(m_{\rm ee}) + (1 - r) \cdot f_{LF}(m_{\rm ee}) + f_{HF}(m_{\rm ee})$$

Virtual photon mass shape (Kroll-Wada eq.) Light-flavor Heavy-flavor Fraction of virtual direct photons extrapolated for $m_{ee} \rightarrow 0 \text{ GeV} c^2$

arXiv:1807.00923 [nucl-ex], Submitted to PRC

contribution

Virtual direct photon measurement is at lower edge of real photon measurement remaining consistent with it within the uncertainties

Dielectrons in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

Hadronic cocktail parametrization:

- Charged pions as proxy for π^0
- η from K/π ratio in Pb-Pb
- Other mesons from m_T scaling
- J/ψ from ALICE measurement in Pb-Pb collisions at 5.02 TeV

Dielectrons from charm and bottom decays obtained as $< N_{coll} > \times (dN/dm_{ee})_{pp}$.

From PYTHIA 6

First evidence of **charm modification** as compared to N_{coll} scaling from PYTHIA from the comparison to hadronic cocktail in 1.1 < m_{ee} < 2.5 GeV/ c^2 :

 \rightarrow data / cocktail = 0.53 ± 0.19 (stat) ± 0.12 (syst) ± 0.13 (cocktail)

Cold nuclear matter effects

R_{AA} of charm quarks including only shadowing effects (EPPS16NLO)

R. Rapp et al., NPA 979 (2018) 21

Simulation of charm suppression:

Electrons from charm decays in PYTHIA are weighted using the p_T -dependent R_{AA} :

Data are consistent with the cocktail with modified charm in the mass range $1.1 < m_{ee} < 2.5 \text{ GeV}/c^2$:

Data/cocktail = 0.82 ± 0.26 (stat.) ± 0.18 (syst.) ± 0.29 (cocktail)

Dielectrons in pp collisions at \sqrt{s} = 7 **TeV**

JHEP 09 (2018) 64

Dielectron spectrum consistent with the cocktail within uncertainties

DCA_{ee} is a powerful tool to separate prompt and non-prompt dielectron sources

improved resolution in Run 3 with upgraded ITS

$$\mathrm{DCA}_{\mathrm{ee}}\left(\sigma\right) = \sqrt{\mathrm{DCA}_{\mathrm{e^{+}}}^{2}/\sigma^{2} + \mathrm{DCA}_{\mathrm{e^{-}}}^{2}/\sigma^{2}}$$

 $DCA_e(\sigma)$: Distance-of-closest approach to the vertex in unit of DCA resolution (σ)

Charm & bottom cross sections at \sqrt{s} = 7 TeV

Charm & bottom cross sections extracted from a double-differential ($m_{\rm ee}$, $p_{\rm T}$) fit of data in the intermediate mass region (1.1 < $m_{\rm ee}$ < 2.7 GeV/ c^2)

Measured cross sections are consistent with independent measurements

Model dependence (PYTHIA vs. POWHEG):

Dielectrons are sensitive to charm production mechanism and angular correlations

Dielectrons in pp collisions at \sqrt{s} = 13 TeV

arXiv:1805.04407 [hep-ex], submitted to PLB

Good understanding of hadronic component in pp collisions

First measurement of $\sigma_{c\bar{c}}$ and $\sigma_{b\bar{b}}$ in pp collisions at \sqrt{s} = 13 TeV from 2D fit in intermediate-mass region (1.03 < m_{ee} < 2.86 GeV/c):

$$d\sigma_{c\bar{c}}/dy|_{y=0} = 974 \pm 138 \text{ (stat.)} \pm 140 \text{ (syst.)} \ \mu b$$

 $d\sigma_{b\bar{b}}/dy|_{y=0} = 79 \pm 14 \text{ (stat.)} \pm 11 \text{ (syst.)} \ \mu b$

$$d\sigma_{c\overline{c}}/dy|_{y=0}$$
 = 1417 ± 184 (stat.) ± 204 (syst.) μb $d\sigma_{b\overline{b}}/dy|_{y=0}$ = 48 ± 14 (stat.) ± 7 (syst.) μb

using PYTHIA

using POWHEG

Consistent with extrapolations from lower energies

Similar model dependence as for pp collisions at 7 TeV

Dielectrons in high-multiplicity pp collisions

arXiv:1805.04407 [hep-ex], submitted to PLB

Observable:

$$\frac{N_{
m ee}({
m HM})}{\langle N_{
m ee}({
m INEL})
angle} imes \frac{\langle {
m d}N_{
m ch}/{
m d}\eta({
m INEL})
angle}{{
m d}N_{
m ch}/{
m d}\eta({
m HM})}$$

account for trivial scaling with charged-particle multiplicity

Ratio is in good agreement with hadronic cocktail in all p_T ranges

Dielectrons in high-multiplicity pp collisions

arXiv:1805.04407 [hep-ex], submitted to PLB

Observable:

$$\frac{N_{\rm ee}({\rm HM})}{\langle N_{\rm ee}({\rm INEL})\rangle} \times \frac{\langle {\rm d}N_{\rm ch}/{\rm d}\eta({\rm INEL})\rangle}{{\rm d}N_{\rm ch}/{\rm d}\eta({\rm HM})}$$
 account for trivial scaling with charged-particle multiplicity

Ratio is in good agreement with hadronic cocktail in all p_T ranges

High p_T (3 < p_T < 6 GeV/c) dominated by bottom:

multiplicity dependence similar to that of open charm (first clear evidence)

Dielectrons in high-multiplicity pp collisions

arXiv:1805.04407 [hep-ex], submitted to PLB

Observable:

$$\frac{N_{\rm ee}({\rm HM})}{\langle N_{\rm ee}({\rm INEL})\rangle} \times \underbrace{\frac{\langle {\rm d}N_{\rm ch}/{\rm d}\eta({\rm INEL})\rangle}{{\rm d}N_{\rm ch}/{\rm d}\eta({\rm HM})}}_{\text{account for trivial scaling with charged-particle multiplicity}}$$

Ratio is in good agreement with hadronic cocktail in all p_T ranges

High p_T (3 < p_T < 6 GeV/c) dominated by bottom:

multiplicity dependence similar to that of open charm (first clear evidence)

Virtual direct-photon measurement:

No significant direct-photon contribution is observed: upper limits at 90% C.L. are set > Consistent with pQCD calculations

Data sample	$1 < p_{\mathrm{T,ee}} < 2 \mathrm{GeV}/c$	$2 < p_{\mathrm{T,ee}} < 3 \mathrm{GeV}/c$	$3 < p_{\mathrm{T,ee}} < 6 \mathrm{GeV}/c$
Minimum bias	0.057	0.072	0.023
High multiplicity	0.060	0.083	0.055
pQCD	0.003	0.007	0.013

Low-B field results

Pilot runs of pp collisions at \sqrt{s} = 13 TeV with reduced magnetic field

Performance test for Run 3 after the upgrade

Talk by **C. Bedda** on Th. 04/10 (9:00 AM)

Larger efficiency due to higher TOF acceptance at the same p_T Measurement extended to lower p_T : 200 MeV/ $c \rightarrow 75$ Me

Summary

φ meson production:

- No consistent description by the models in pp collisions
- Yield underestimated by HIJING and EPOS in Pb-Pb collisions

Dielectron measurements:

- Limited sensitivity to low-mass excess in Pb-Pb collisions
 - Precision measurement is expected after the upgrade
- First indication of deviation of charm yields from binary scaling at $\sqrt{s_{NN}}$ = 5.02 TeV
- Sensitivity to charm and bottom production in pp collisions

Summary

meson production:

- No consistent description by the models in pp collisions Yield underestimated by HIJING and EPOS in Pb-Pb collisions

Dielectron measurements:

- Limited sensitivity to low-mass excess in Pb-Pb collisions
 - Precision measurement is expected after the upgrade
- First indication of deviation of charm yields from binary scaling at $\sqrt{s_{NN}}$ = 5.02 TeV
- Sensitivity to charm and bottom production in pp collisions

Thank you for your attention

Backup slides

ω and φ mesons in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV

Large data sample of pp collisions at $\sqrt{s_{NN}}$ = 13 TeV:

 \triangleright double-differential (p_T, y) production cross-sections of ω and ϕ mesons

PYTHIA 8 fairly describes the ϕ meson spectrum over the measured p_T range PHOJET overestimates the production cross-section of both the ω and ϕ mesons

Charm in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

Random angular correlations of dielectrons from charm decays:

Charm contribution suppressed by a factor ~2

Thermal e⁺e⁻ in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

Charm modification from EPS09

Modified charm from EPS09 calculation

Anomalous dielectron pairs

Excess of dielectrons observed by the AFS experiment at the ISR for $0.05 < m_{\rm ee} < 0.6 \; {\rm GeV}/c^2$ and very low pair- $p_{\rm T}$

Ph. D. thesis of V.Hedberg, Lund University (1987)

Probe similar kinematic region at the LHC

More data and precise η measurement at low p_T are needed

Perspectives after the ALICE upgrade

J. Phys. G 41 (2014) 087002

- New ITS: suppression of main background sources (Dalitz, conversion & charm)
- Continuous TPC readout will increase event rate by a factor ~100
 - Detailed measurement of in-medium modification & thermal radiation