Heavy flavour dynamics in event-by-event viscous hydrodynamic backgrounds

Roland KATZ¹, C. Prado², A. Suaide¹, J. Noronha-Hostler³, J. Noronha¹ and M. Munhoz¹

¹ Institute of Physics - University of São Paulo - Brazil - *rkatz@if.usp.br*

² Institute of Particle Physics, Central China Normal University (CCNU), Wuhan, China ³ Department of Physics and Astronomy, Rutgers University, Piscataway, USA

Supported by FAPESP (Brazil)

Motivations

 \checkmark Develop a modular simulation "DAB-mod" to study the production of open heavy mesons in heavy ion collisions and describe simultaneously the R_{AA} and v₂. Study the heavy flavour azimuthal anisotropies through the more rigorous cumulant method.

Compare different transport models with the same background.

✓ Investigate the effect of initial geometries and fluctuations on the heavy quarks dynamics through common and new observables.

C. Prado, J. Noronha-Hostler, R. K., A. Suaide, J. Noronha and M. Munhoz, Nucl. Phys. A 967 (2017) 664-667 [arXiv:1704.04654]; Phys. Rev. C 96 (2017) 064903 [arXiv:1611.02965]

THE DAB-mod TIMELINE

- Large oversampling of the heavy quarks. - Distributed spatially following initial QGP

Energy loss model

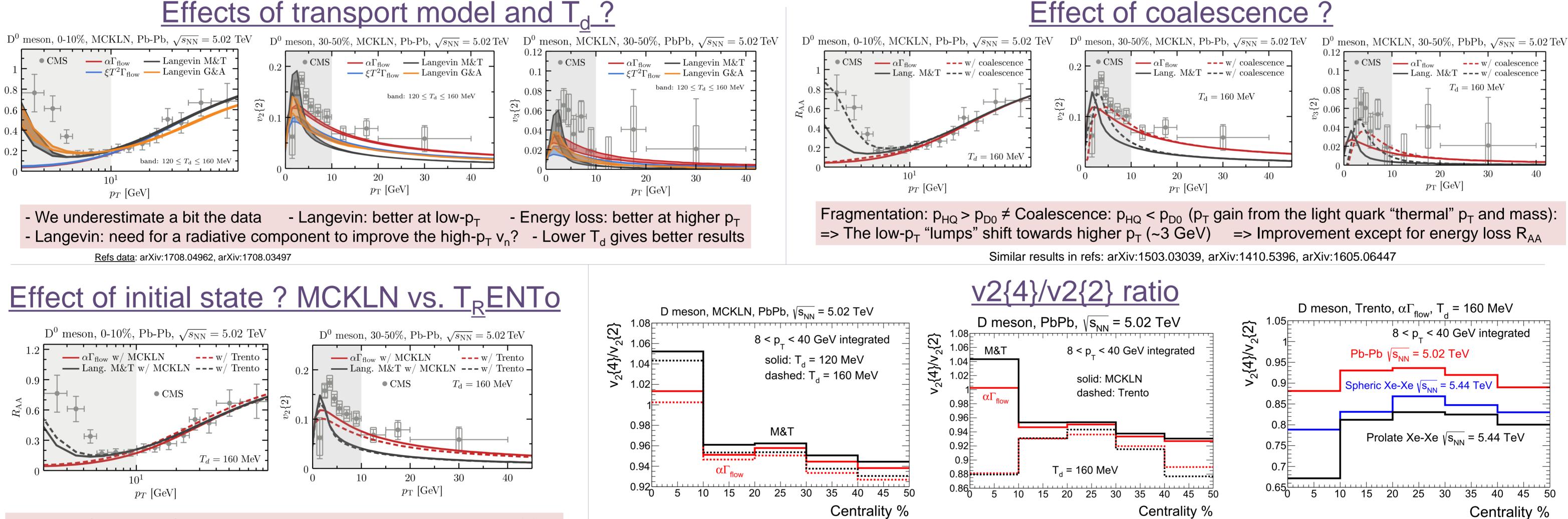
 $\frac{dE}{dx} = -f(T, p, x) \Gamma_{\text{flow}}$

where the chosen parametrizations

 $f(T, p, x) = \alpha$ and $f(T, p, x) = \xi T^2$

 $dp_i = -\Gamma(\vec{p})p_i dt + \sqrt{dt}\sqrt{\kappa}\rho_i$

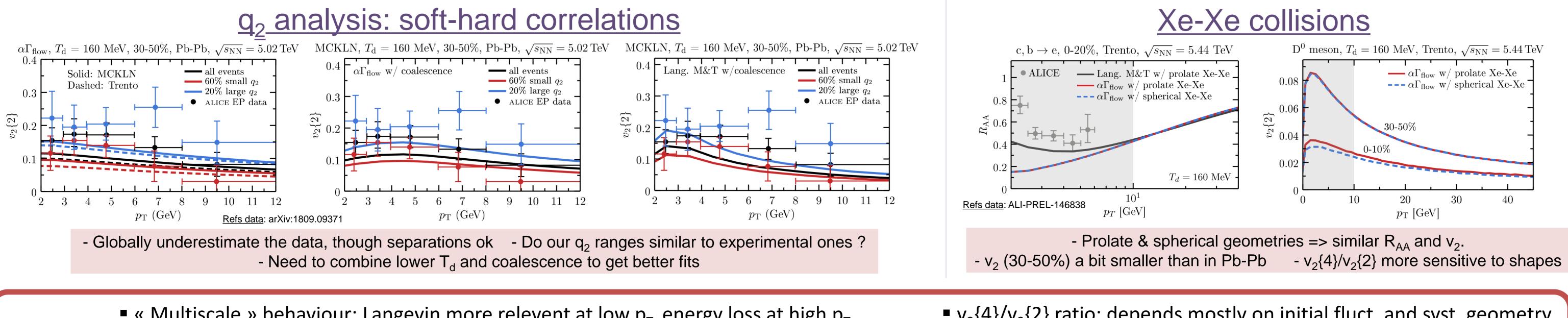
with the necessary Lorentz boosts and the classic fluctuation-dissipation relation for the diffusion coefficients: $2 F \Gamma T = 2 T^2 / \Gamma$


Decoupling temperature: 120 < T_d < 160 MeV encode hadronization large uncertainties. **Fragmentation** With the Peterson frag. function, $f(z) \propto [z(1-1/z-\epsilon_Q/(1-z))]^{-1}$ to obtain the fraction z of the heavy quark $E_{0}+p_{0}$ taken by the hadron $E_{H}+p_{H}$.

light-heavy quark coalescence

 energy density. Transverse momentum distribution given by FONLL spectra and with random azimuthal direction. No shadowing or cold nuclear matter effects. 	$\begin{array}{l lllllllllllllllllllllllllllllllllll$	Here 2 di - « M&T » QCD+HT - « G&A » QCD+HT coupling a		Light-heavy quark - Inspired by Dover et al.: ins - Coalescence probabilities local flow and the ang - To fit the observed heavy ha 1) thermal factor "exp[-(m _{excit} hierarchy between the mass 2) baryon factor to enhand ratios (to compensate r Refs: arXiv:1804.09083v1, Radhakrishnan's	stantaneous projections. as a function of p_Q , the le between them. adron ratios, we include: $ted^{-m_{ground}}/T_d]$ " => mass states of a hadron type, ce the baryon/meson missing dynamics)
Heavy quarks	Initial condition		Transport	Hadronization	Decays
Bulk	Initial fluctuations		Expansion	Final stages	
 implementation of a 0 kt-factorization mode ✓ T_RENTo: based on e via a "reduced-thickn For now: Au-Au at 200 5.02 TeV, spherical and (Woods-Saxon parameterization) 	ev-Levin-Nardi " MCKLN ": Color Glass Condensate I. ikonal entropy deposition	requires tempera - QGP e code: a 2 viscous set to η/s - ~1000	avy quark transport equations QGP profiles to provide ture and flow fields. volution with the v-USPhydro 2D+1 event-by-event relativistic hydrodynamic model. Viscosity is s = 0.05 and initial time to 0.6 fm/c events per centrality 10% range. rXiv:1305.1981, arXiv:1508.02455, arXiv:1307.6130, arXiv:0707.0249		 No re-scattering considered in the final hadronic phase. Focus on semi-leptonic decays performed with Pythia 8.

Effect of coalescence ?



- Type of initial bulk fluctuations has a small impact on HF R_{AA} and v_n {2} observables with our mehod to fix the transport model coefficient values.

- Almost independent of chosen transport model and T_d - Geometry (size & shape) has an important influence

- T_R ENTo leads to a slight increase of the RAA and decrease of v2

- Type of initial state fluctuations has an impact, especially on the trend => a way to characterize the fluctuations experimentally ? - Ratio trends with Trento are similar in the soft sectors (see arXiv:1711.08499v2)

• « Multiscale » behaviour: Langevin more relevent at low p_{τ} , energy loss at high p_{τ} **<u>Conclusion</u>**: Coalescence required but not sufficient to fit low p_{τ} data T_RENTO vs. MCKLN initial states: small effect on common observables

v₂{4}/v₂{2} ratio: depends mostly on initial fluct. and syst. geometry **Future:** Coalescence at Td=120 MeV and for bottom quarks, Langevin with radiative component, p-Pb collisions, 3D, shadowing...