Hard Probes 2018: International Conference on Hard & Electromagnetic Probes of High-Energy Nuclear Collisions

Contribution ID: 322

Type: 2c) Jets and high-pT hadrons (POSTER FROM TALK)

Simulation studies of $R_2(\Delta\eta, \Delta\varphi)$ and $P_2(\Delta\eta, \Delta\varphi)$ correlation functions in pp collisions with the PYTHIA and HERWIG models

We report studies of charge-independent (CI) and charge-dependent (CD) two-particle differential number correlation functions, $R_2(\Delta\eta, \Delta\varphi)$, and transverse momentum correlation functions, $P_2(\Delta\eta, \Delta\varphi)$, of charged particles produced in pp collisions at the LHC centre-of-mass energy $\sqrt{s} = 2.76$ TeV with the PYTHIA and HERWIG models. Model predictions for R_2 and P_2 correlation functions are presented for inclusive charged hadrons (h^{\pm}), as well as pions (π^{\pm}), kaons (K[±]), and protons/anti-protons (p/\bar{p}) in the transverse momentum ranges $0.2 < p_T \leq 2.0 \ GeV/c$, $2.0 < p_T \leq 5.0 \ GeV/c$ and $5.0 < p_T \leq 30.0 \ GeV/c$, and with full azimuthal coverage in the pseudorapidity range $|\eta| < 1.0$. We compare the two model predictions for the strength, shape, particularly the width of the R_2 and P_2 correlation functions as these pertain to recent measurements of such correlations by the ALICE collaboration.Our analysis indicate that comparative studies of R_2 and P_2 correlation functions, and by extension, should also be useful in studies of heavy-ion collisions at high energy.

Summary

Primary author: SAHOO, Baidyanath (IIT- Indian Institute of Technology (IN))

Co-authors: NANDI, Basanta Kumar (IIT- Indian Institute of Technology (IN)); PUJAHARI, Prabhat Ranjan (Indian Institute of Technology Madras (IN)); Prof. PRUNEAU, Claude Andre (Wayne State University (US)); Dr BASU, Sumit (Wayne State University)

Presenter: SAHOO, Baidyanath (IIT- Indian Institute of Technology (IN))

Session Classification: Poster Session